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ABSTRACT 

This research involved the design and implementation of a complete line- 

addressable control system for a 32x32 electrostatic piston-actuated micromirror array 

device. Line addressing reduces the number of control lines from N to 2N making it 

possible to design larger arrays and arrays with smaller element sizes. The system 

utilizes the electromechanical bi-stability of individual elements to hold arbitrary bi- 

stable phase patterns, a technique previously used on tilt arrays. 

The control system applies pulse width modulated (PWM) signals to the rows and 

columns of the device to generate a static phase pattern across the array. Three modes of 

operation were considered and built into the system. The first was the traditional signal 

scheme which requires the array to be reset before a new pattern can be applied. The 

second is an original scheme that allows dynamic switching between bi-stable patterns. 

The third and final mode applies an effective voltage ramp across the device by operating 

above mechanical cutoff. Device characterization and control system testing were 

conducted on samples from two different foundry processes. 

The test results showed that the control system was successfully integrated, 

however individual bi-stable control was not successfully demonstrated on the 

micromirror arrays tested. The inability to demonstrate bi-stable control is attributed to 

flaws in the device and variations in snap-down voltage with the application of PWM 

signals below mechanical cutoff. Methods to correct these flaws for a future redesigned 

lin-addressable device are proposed. 
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CONTROL AND CHARACTERIZATION OF LINE- 

ADDRESSABLE MICROMIRROR ARRAYS 

/. Introduction 

"...the future of MEMS is more than bright - it is dazzling." 

- Kurt Peterson, Ph.D., MEMS pioneer, 1998 [28] 

"I think there is a world market for maybe five computers." 

- Thomas Watson (1874-1956), Chairman of IBM, 1943[38] 

1.1   Problem Background 

Microelectromechanical systems (MEMS) devices continue to offer exciting and 

inexpensive alternatives to various conventional sensor and actuation systems. In the 

field of optical engineering, the micromirror array is an example of one such MEMS 

device. When properly controlled, micromirror arrays can modulate light spatially in 

both static and dynamic settings. Their use has been theorized and, in some cases, 

already realized in various areas of applied optics including adaptive optics [13], optical 

switching [27], optical neural networks [8], optical projection [21], and others [25]. The 

commercial potential of these devices has already been demonstrated, most notably by 

the immense success of Texas Instruments' Digital Micromirror Device (DMD). Their 

potential for specific applications in weapon system design, optical networking, and 

satellite imaging has caught the attention of several military researchers. Consequently, 

the Defense Advanced Research Projects Agency (DARPA) has sponsored research into 



micromirror arrays and MEMS for the past several years. The Air Force Institute of 

Technology (AFIT) has led several pioneering efforts in the study of micromirror arrays 

from which this research is a direct consequence [4, 9,13, 19, 32, 37, 40]. 

The size of the array, granularity of elements, and the adjustability in the position 

of individual elements are the main features that dictate performance and limitations of a 

micromirror array. Conventional array designs control the individual elements of the 

micromirror array by individual wiring of each element. However, this method limits the 

size of the array since the large number of physical interconnects required becomes 

impractical. Texas Instruments' DMD overcame this obstacle by monolithically 

fabricating its micromirror array over an SRAM (Static Random Access Memory) array 

that would digitally store the position of each element [21]. Each element's control 

electrode is then addressed by a memory cell directly underneath the element, eliminating 

the need to route wires underneath the array. However, the fabrication cost necessary for 

this level of integration is high, especially for applications with smaller expected markets. 

In addition, this control method limits the number of states a particular element can hold. 

The desire for increased capability and more cost effective methods has motivated 

research into implementing alternative control schemes utilizing line-addressing [14, 24]. 

Line-addressing implies controlling individual elements solely through wiring of the rows 

and columns of the array. For a square NxN array, line addressing will reduce the 

number of control lines needed from N2, in a conventional design, to 2N. Thus line 

addressing allows increased array sizes while maintaining actuation of individual 

elements and the ability to fabricate using a low-cost, high-yield process. 



Previous work on line-addressable control of micromirror arrays is primarily 

limited to two papers [14, 24]. The first, from Jaecklin et al. [24], describes a line- 

addressable torsional micromirror array device. Jaecklin proposed a control scheme for 

the device such that each element in the array could occupy one of two positions, a "bi- 

stable" mode of operation. This control scheme utilizes the electromechanical bi-stability 

inherent in the device to hold positioning of the elements. Essentially it allows the 

application of an arbitrary static bi-stable pattern to the array. However, this control 

scheme requires that the array must be reset, before a new pattern can be applied to the 

array. While Jaecklin proposed this control scheme, it was not implemented for this 

paper. 

The second paper, from Cunningham et al. [14], describes another torsional 

micromirror array, dubbed a bi-stable array of micromirrors (BAMM). This design was 

not purely line-addressable since it actually had two control lines for every column and 

one line for every row. However, these extra lines allowed switching of each element 

between two different tilted positions, where in the previous work the two bi-stable 

positions were "tilt" and "no tilt". A control scheme based on the same principle utilized 

by Jaecklin was designed and implemented, proving that electromechanical bi-stability 

was indeed a viable means of control. In addition, the extra lines afford the ability to 

switch dynamically between bi-stable patterns. 

This thesis is an extension of work first initiated by Lt Col William Cowan and 

Capt David Conrad at the Air Force Research Laboratory Hardened Materials Branch 

(AFRL/MLPJ) at Wright-Patterson AFB, OH [10, 11]. It expands the idea of line- 



addressable control using electromechanical bi-stability to a piston-actuated micromirror 

array, and improves upon the previously mentioned control schemes. The line- 

addressable micromirror array (LAMA) used in this thesis was originally designed by Lt 

Col William Cowan. The long-term goal behind this work is to successfully develop a 

line-addressable device and corresponding control scheme such that each mirror element 

could hold a variety of positions (multi-stable). This would significantly increase the 

versatility in the aforementioned optical applications. 

1.2 Problem Statement 

This thesis is a proof-of-concept study with an aim of designing and testing a line- 

addressable control circuit for a bi-stable micromirror phased array. I explore the 

implementation and capabilities of a specific line-addressed micromirror system, unlike 

any other previously attempted. Specifically, a control system was needed for a line- 

addressable phased micromirror array previously designed at AFIT. 

1.3 Scope and Objectives 

My objectives for this thesis were 1) to implement and design the remaining 

components for the intended control system, and 2) demonstrate the system's ability to 

hold a static bi-stable deflection pattern when connected to a line-addressable 

micromirror array. The intent was to prove that line-addressable operation of a 

micromirror phased array could be achieved using pulse-width modulated signals and 

that this type of system has the potential for use in conventional applications. In addition, 

alternate modes of operation were considered throughout the design process. The scope 



was initially limited to demonstrating variable dynamic bi-stable control of a far-field 

pattern with the micromirror array system. 

1.4   Approach and Methodology 

My work centered on the achievement of six central milestones. The first 

milestone was to develop a complete theoretical and experimental understanding of the 

micromirror arrays to be controlled. This understanding included their physical structure, 

method of fabrication, and performance characteristics. Testing of individual rows and 

columns on the array were accomplished with both DC and amplified pulse width 

modulated (PWM) signals. Effective spring constants were experimentally estimated for 

use in both steady-state and frequency response models. 

The second milestone, was to develop an understanding of the control system 

intended for these micromirror arrays. This included identifying the necessary 

components for the control system and ascertaining what needed to be done to create 

each of them. It was determined that the control system should consist of three central 

parts: 1) the software control interface; 2) the personal computer (PC) controller board; 

and 3) the pulse amplification circuit board. After several lengthy discussions with the 

device designer, a survey of the existing documentation, and some reverse engineering, a 

full understanding of each of their roles was obtained. 

The PC controller board was previously designed and fabricated for me before the 

start of this project. I needed to design and fabricate the other two components myself. 

Unfortuantely, little documentation existed on the operation of the PC board and as a 



result much of its architecture had to be mapped by hand. Ensuring its functionality and 

understanding its wiring and associated circuitry was the third milestone. Specifically, 

jumpers had to be correctly inserted into the circuit before it would perform its intended 

function. Once this was accomplished, testing of the board using previously existing 

software and appropriate electrical testing equipment, revealed that the board was fully 

functional. 

The design and fabrication of the pulse amplification circuit board was the fourth 

milestone. This began by first designing a simple transistor amplification circuit that 

could provide the necessary frequency and gain characteristics for a single channel and 

could easily be repeated for all 64 channels without exceeding power limitations. The 

circuit also needed to be robust enough to handle various modes of testing. Once such a 

circuit was determined and the exact components were chosen, a schematic of the entire 

board was generated by hand using a computer-aided design program. The actual layout 

of the components on the board was accomplished by hand through the assistance of 

design software. After spending several hours optimizing the routing of lines between 

components the final design files were sent to a foundry and a physical board was 

received two weeks later. 

The creation of a software control interface was the fifth milestone. This involved 

creating a Graphical User Interface (GUI) environment that could allow the user to easily 

create, load, and store any bi-stable pattern desired and subsequently apply it to the 

micromirror array at the click of a button. 



The sixth and final milestone was assembling all the components together and 

demonstrating the ability to hold a desired static deflection pattern across the micromirror 

array. This first involved soldering all the components to the amplification board and 

insuring its functionality. Several errors were discovered in the final board design, but 

modifications were made such that the intended design was realized. Next several line- 

addressable micromirror array samples were prepared for testing in the fabrication lab. 

Finally all the system components, and associated test equipment were calibrated and 

assembled together. Once the control system was found fully functional, various sample 

test devices were connected to it, and system operation in the various modes was tested. 

This was done by viewing the test devices under a microscopic laser interferometer. 

Video clips were collected during testing to document the results. 

1.5   Thesis Overview 

This thesis is organized into seven chapters and eight supporting appendices. The 

first chapter introduces the reader to the necessity for line-addressing in micromirror 

arrays. The second chapter provides a review of supporting theory and pertinent 

background information. The third chapter discusses the physical design and how 

characteristics of the line-addressable micromirror array (LAMA) device are measured 

and used in device modeling. The fourth chapter details the theory used to operate these 

devices and how this theory was implemented into an actual control system used for the 

devices. The fifth decribes the experimental setup used during characterization and 

system testing. The sixth chapter presents the results of this testing and corresponding 



analysis. The seventh and final chapter highlights the conclusions made during this 

research and provides recommendations for how future work should be directed. 



//. Theoretical Review 

"Education is a progressive discovery of our own ignorance." 

-Will Durant [38] 

2.1   Overview 
As discussed in Chapter 1, considerable research has been focused on the design 

and control of micromirror arrays. This chapter describes some of the existing designs of 

micromirror arrays and their control schemes. In addition, it highlights several of the 

rudimentary theoretical principles used in achieving the objectives mentioned in Section 

1.3 for the LAMA system that is the subject of this thesis. 

Section 2.2 provides an introduction to micromirror arrays and explains why they 

are classified as spatial light modulators. Section 2.3 highlights the three types of 

electrostatic micromirror designs previously used in arrays. Section 2.4 describes the two 

main types of spatial light modulation and which mirror design is best suited for each. 

These sections are intended to explain why the LAMA design of interest is classified as a 

spatial light modulator. 

Section 2.5 describes the concept of pulse width modulation. Pulse width 

modulated (PWM) signals are used in the control system for this study, which is 

described later in Chapter 4. 

Section 2.5 reviews the two surface micromachining prototyping technologies 

used to create the line-addressable micromirror arrays used in this study. This section 



provides a solid understanding in the material structure of the devices, and the inherent 

limitations of the processes. 

2.2   Micromirror Arrays 

Micromirror arrays were some of the first MEMS devices ever conceived. Their 

development dates back to the mid 1970's, particularly by Peterson [35] (a pioneer of 

MEMS), and Hornbeck (the inventor of Texas Instruments' DMD) [20, 21]. Simply 

defined, a micromirror is a very small movable mirror that has been manufactured 

through a micromachining process, typically on silicon. Micromirrors can range in size 

and shape, functioning as a group or individually, based on their intended function. 

When micromirrors are placed together to form an array, they can collectively act as a 

deformable mirror spatial light modulator (SLM). 

Deformable mirror SLM's can be classified as either continuous sheet or 

segmented. Continuous sheet SLMs consist of some form of membrane or elastomer 

deposited over an underlying array of actuators. Applications that require very low 

optical loss, such as adaptive optics, generally use this type of SLM [11]. However 

continuous phase modulators are typically expensive to construct and control. 

Segmented deformable mirror SLM's consist of several smaller closely spaced mirror 

elements that function together. Micromirror arrays are the most commonly discussed 

segmented deformable SLM's; however, large-scale segmented SLM's do exist [23]. 

Although micromirror arrays may not provide as high a quality optical signal, due to the 

inherent gaps between elements, they do have several advantages over their continuous 

10 



sheet counterparts. Most notably they typically have lower power dissipation, and can be 

monolithically fabricated on silicon, making them comparatively inexpensive to construct 

[20]. 

Micromirrors can be controlled through various means of actuation. In the 

computer age, electronic circuitry provides a simple platform to design a control system 

for a micromirror array. Thus the vast majority of micromirrors used in arrays are 

designed to utilize voltage inputs. Considerable research had been accomplished at AFIT 

by Bright and others with mirrors that utilized electrically driven thermal actuators [4, 9]. 

However, these do not have adequate response times to be used in an array intended for 

dynamic spatial light modulation. Electrostatic actuation provides simple coupling to 

controls and fast response times, making it the mechanism of choice. 

2.3 Electrostatically Actuated Micromiror Designs 

The following subsections highlight three common types of electrostatic 

micromirrors used in array designs. Note that numerous designs have been previously 

demonstrated for all three [13, 20, 27]. 

2.3.1   Piston Actuated 
This type of design consists of two parallel plates, typically square, wired to two 

separate electrodes. The surface of the upper plate acts as the mirror surface and is 

typically coated with a metal or other reflective material. This upper plate is suspended 

above the lower plate by flexure beams that are connected to the ground plane and 

effectively act as springs. The fabrication process used to create them dictates the 

11 



Separation distance. When a voltage difference is created between the two plates, the 

resulting electrostatic force pulls the upper electrode down towards the bottom plate. The 

flexures provide a restoring force which balances the electrostatically induced force. 

This balance allows a stable piston-like motion to be achieved perpendicular to the 

surface in which the mirror lies. Figure 2-1 graphically depicts this type of design. 

Top Plate 

I + 
flexure spring \ "S. <^ ^~— flexure spring fy\ 

Bottom Plate 

Substrate 

Figure 2-1. 2-D representation of a piston actuated micromirror 

2.3.2   Torsional Beam 
This type of design causes a tilting or tipping motion of a mirror plate. Once 

again there are two sets of plates connected to separate electrodes. In most designs of 

this type, an upper plate is supported by a beam or beams upon which it can pivot 

[21, 24, 27]. The lower electrode can be on one or both sides of the beam allowing the 

mirror to tilt in either direction when a voltage difference is applied across electrodes. 

The restoring force lies in the beam, which acts as a torsional spring. A cross-sectional 

representation of this type of design is shown in Figure 2-2. The most prominent 

example of a torsional micromirror device is the Texas Instruments DMD [20, 21]. 

12 



\k 

torsional beam 

Top (Rotating) Plate CL 

Jdirection of rotation 

Bottom Plate 

Substrate 

Figure 2-2. 2-D representation of a torsional beam micromirror 

2.3.3    Cantilever Beam 
The simplest type of micromirror device is the cantilever design. The cantilever 

consists of an upper electrode suspended above a lower electrode by a beam that is fixed 

at one end. As in the previous designs, when a voltage is applied between the electrodes 

the beam is bent down. Once again the structural elasticity of the beam is relied upon to 

provide the necessary restoring force. Prototype designs of Texas Instrument's DMD 

predecessor, the Deformable Mirror Device (also abbreviated DMD), were of this type 

[21]. Figure 2-3 shows a representation of this design. 

\° 

cantilever beam 

support post 

^ 
Top Beam         1    > 

i C Bottom Plate 

Substrate 

+ 

direction of motion 

) 

Figure 2-3. 2-D representation of cantilever beam micromirror 
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2.4   Spatial Light Modulation 

As previously stated, micromirror arrays can accomplish spatial light modulation. 

Spatial Light Modulation is a term that implies manipulating the spatial extent of light, 

typically in the far-field. There are, however, two distinctly different types of modulation 

that can be achieved; intensity and phase modulation. The type of modulation desired 

determines the type of micromirror element design that should be implemented in an 

array. 

Intensity modulation implies controlling the radiation distribution that is incident 

over a certain area. Portions of a wavefront incident on an intensity modulator are either 

reflected toward or away from a designated area. The speed at which this switching 

occurs determines the average intensity of light that is incident on the area. Micromirror 

arrays utilizing intensity modulation can be used in pixilated imaging systems. In this 

application each element of the array controls that amount of light incident on a 

corresponding pixel. Torsional and cantilever beam elements are used for this type of 

modulation since they can switch reflected light on and off a target by pivoting [19]. 

Phase modulation implies controlling the amount of phase accumulated across an 

incident wavefront upon being reflected off of the surface of the modulator. For an 

incident wave with a phase of (p(x,t), the corresponding reflected field off of the phase 

modulator device can be expressed as: 

Er(x,f) = exp[i(<D(x,0-A(x,0)] {2-1} 

14 



where x is the spatial coordinate, t is the time, and A(x, t) is the accumulated phase of 

the wavefront [19]. When these phase modulation elements are placed in an array the 

amount of phase accumulation across the array can be varied to change the overall 

propagation of the reflected wave. Piston actuated elements are used to achieve this type 

of modulation since the vertical position can control the amount of phase accumulated for 

that particular element. These types of arrays are used in beam steering and phase 

correction applications. The micromirror array that is the focus of this research is piston 

actuated and is thus designed to perform phase modulation. 

2.5   Pulse Width Modulation 

The line-addressable micromirror array (LAMA) system used in this research 

utilizes Pulse Width Modulated (PWM) control signals to actuate individual micromirror 

elements. A PWM signal is a periodic rectangular signal (typically voltage) of fixed 

frequency and varying duty cycle. Figure 2-4 shows a generalized ideal PWM 

waveform. 

Voltage 

V on 

Voff 
< ► 

Trise Tfall 

Time 

Tend 

Figure 2-4. Example Pulse Width Modulated Waveform 
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Duty cycle refers to the percentage of time that the signal is in the active state. The duty 

cycle of the PWM waveform depicted in Figure 2-4 is defined as [1, 40]: 

DutyCycle = Tfall~_Trise {2-2} 
end rise 

The primary advantage of using pulse width modulation over other control 

techniques is that the signal can be created and manipulated entirely through digital 

circuitry, meaning conversion from an analog signal is unnecessary. However, it should 

be noted, that in communication systems where conversion from an analog signal is 

required, pulse width modulation remains a viable option [39]. In addition, most modern 

digital circuitry is fabricated using complementary metal oxide semiconductor (CMOS) 

logic, which has low power consumption as well as several other benefits. This logic 

allows pulse width modulation to be used as an extremely efficient means of voltage 

regulation, which is why it is typically used in power supplies or drive circuitry for 

motors [1, 40]. When using digital logic, the active state of the signal corresponds to a 

logic state of 1. For a CMOS digital circuit design, a logic state of 1 usually is 5V, while 

a logic state of zero is 0V [1]. 

Although the PWM signals used in the LAMA system are not intended for 

voltage regulation, power consumption plays an important role in the design of pulse 

amplification circuitry. It therefore becomes important to understand how energy is 

transferred in a PWM signal. 
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When the instantaneous power pit) drawn by a given load varies periodically, as 

it does with a PWM signal, the long term average power equals the average over one or 

more periods. Thus the average power dissipation , P, or rate of energy transferred to a 

load, is defined as [5]: 

T      Tht 

where W is the total energy transferred to the load, T is the period of the signal, and tx is 

some arbitrary time. When considered in terms of a time-varying voltage, v(0, applied 

to a resistance, R, the instantaneous power is equivalent to: 

p(t) = ^Vl = Bi2(t) {2-4} 

where i(t) is merely the corresponding time-varying current. Thus Equation {2-3} can be 

expressed as: 

1   C'l+T 1      f'l+' T 
-f     v\t)dt 
T {2-5] 

R 

However, it is typically easier to think of the power dissipation in terms of a constant 

voltage (or current), which is why the effective or root-mean-square (rms) value of a 

periodic signal is commonly used. In the case of a periodic voltage the rms value, V^, is 

defined by [5] 

v~=$r*m- {2'6} 
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Thus, an alternate expression for average power is 

V z 
p      rms_ 

R 
{2-7} 

For the PWM signal defined in Figure 2-2 the rms voltage is given by 

V    = rms T    -T end rise 

iV/2 
'fall 'end 

jvon
2dt+jv0/dt 

'fall 

{2-8} 

which simplifies to 

V    = rms 

T    -T 1 fall      1 rise 

T    -T end rise 

A/2 

{von-vofff+(vofff {2-9} 

Note that the initial ratio in Equation {2-9} is the duty cycle. Substituting Equations 

{2-2} and {2-9} into Equation {2-7} yields 

P = DutyCycle 
R 

2\ 

+ 
R 

{2-10} 

which is an expression for the average power dissipation of a PWM signal through a 

resistance R . Equation {2-10} shows that this average power can be varied linearly by 

varying the duty cycle. 

Pulse width modulated control has been previously used to actuate micromirror 

arrays whose elements were individually wired. This was first accomplished at AFIT on 

thermally actuated mirrors by Butler, and later on electrostatically actuated arrays by 

Rounsavall [15]. In the case of Rounsavall's electrostatically actuated array, the PWM 

signals were applied at a frequency above the mechanical cutoff of the devices. The 
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micromirror array elements in the system responded to the rms voltage of the signal, 

which the control system varied through the duty cycle as desired. Previously developed 

line-addressable control systems [14, 24], as well as the LAMA system that is the subject 

of this study, utilize PWM signals at frequencies below mechanical cutoff. This mode of 

operation allows the actual magnitude of the signal at a given time to be applied to the 

mirror elements. 

2.6   Silicon MEMS Prototyping Fabrication Techniques 

Microelectromechanical systems can be classified in various ways such as by 

function (sensors or actuators), method of transduction [28], degree of complexity, or 

method of fabrication. While there currently is no taxonomy standard for MEMS, it is 

necessary to understand how these device are created in order to properly use them. Such 

is the case with the LAMA device used for this study. A great deal of research continues 

to be devoted to this subject, as it is truly the essence of the field. This section provides 

only a cursory review of the subject, briefly highlighting the techniques used to fabricate 

the LAMA device used in this thesis. A much more extensive review of the subject is 

presented by Madou [31] and Kovacs [28]. 

In general, when microfabrication, or micromachining, is being discussed it is 

often in reference to making devices using a silicon substrate, however other materials 

such as GaAs are used, particularly for integration with light emitting devices, and are 

being actively researched. This is primarily due to the fact that many of the techniques 

used in micromachining leverage technology already used for integrated circuit 
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fabrication, which is primarily based on silicon and very well developed. Thus when 

MEMS devices are manufactured on silicon, they are processed in mass on a wafer, in the 

same fashion as conventional microelectronics chips. Micromachining is typically 

classified into two branches. The first, involves etching into the substrate to create 

structures, and is called bulk micromachining. The second, deposits additional layers of 

material to the substrate and patterns them accordingly to create structures. This method 

is called surface micromachining and is used to create the majority of MEMS devices, 

since the possibilities afforded by several layers are enormous. 

The two primary commercially available foundries for prototyping MEMS 

devices both employ surface micromachining. They are Sandia's Ultra-Planar Multi- 

level MEMS Technology (SUMMiT), from Sandia National Laboratory, and Cronos 

Integrated Microsystem's Multi-User MEMS Process (MUMPs™). Sample LAMA 

devices fabricated from each technology were used in this thesis, and as a result certain 

key differences exist between them. However, a basic understanding of surface 

micromachining is necessary to appreciate them. 

In surface micromachining, the mechanical layers used to create the device 

structure are typically some form of polysilicon. Devices that require a certain degree of 

freedom to move, are typically suspended above the substrate, as is the case with 

micromirrors. This is accomplished through the use of sacrificial oxide layers, which are 

used to separate the polysilicon layers. These layers are later etched away after the 

device is fabricated, in what is commonly termed the "release" process, allowing the 
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device structure to be suspended as desired. Figure 2-5 illustrates this process through 

the construction of a simple cantilever beam. 
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sacrificial layer 

Deposit structural layer 

Etch sacrificial layer 

Electrical Isolation 
Layer 

i L 
Sacrificial layer 

*&&&$$8$^ 

Silicon Substrate 

& 
/ 

Structural layer 

£&&aa^&;&-ras^^ 

Silicon Substrate 

-a 
i 

L 
Released cantilever 

beam 

&?s^a&aa^?a?^^ 

Silicon Substrate 

Figure 2-5. Simplified depiction of surface micromachining process, from [12] 

Patterning of each layer in the surface micromachining process is typically 

accomplished through photolithography. First, the material layer is deposited 

conformally across the entire wafer. The conformal nature of this deposition denotes that 

the surface topology of the layer being deposited "conforms" to that of the layer beneath 

it. Next, a thin layer of photoresist is spun onto the wafer. Photoresist is a polymer based 

syrup-like compound that is sensitive to light. Depending on the type of photoresist, 
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when exposed to light it either strengthens or breaks apart the molecular bonds between 

polymer chains. Patterns are thus applied to the photoresist by exposing it under a mask 

that has the desired pattern for that layer. The sample is then dipped in a chemical bath 

that rinses away the areas where the polymer bonds are weakened. The sample is then 

etched such that the areas in the layer that aren't covered with photoresist are removed. 

The photoresist acts effectively as a pattern mask for the etch. Once the etching is 

completed, the photoresist is stripped and the process is repeated for the next layer. 

Photolithography is used extensively in integrated circuit (IC) fabrication. As a result, 

many of the deposition and etching techniques used in IC fabrication can also be used to 

fabricate MEMS devices. It is important to note that it is the photolithography process 

that determines the minimum feature size and line spacing. Subsequently, the IC industry 

is continuously driving research to improve the process. A much more extensive review 

of photolithography and how it is accomplished are presented by Sze [43]. 

Process factors such as thermal annealing, deposition, etch method, surface 

planarization, number of layers, layer thicknesses, and doping of polysilicon are what 

distinguish a given surface micromachining process. To increase yield and ease the 

release process additional design factors are also included. For instance, to prevent 

stiction between suspended layers during device release and operation, dimples are 

available for the bottom surfaces of the polysilicon structural layers. Another common 

feature is the inclusion of etch release holes to speed the release of the device. The 

SUMMiT and MUMPs™ processes differ in several of these aspects. 
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MUMPs™ utilizes 3 layers of polysilicon (2 releasable) and a gold metal layer. It 

costs roughly $3,000 for a single 1cm square die site, making it a relatively low cost 

process. For each die the user receives approximately 15-16 samples. In addition, it has 

a very fast turnaround time of about 2 months. An additional feature unique to the 

MUMPs™ process is that a significant amount of residual stress is often exhibited by the 

releasable polysilicon layers. One final benefit is that the sacrificial oxide used in 

MUMPs™, a type of phosphosilicate glass (PSG), etches very fast (-2.5 min) in an 

hydrofluoric acid (HF) based solution. 

The SUMMiT process is a four layer polysilicon process (3 releasable). 

However, no metal layer is available making it difficult to bond wire to the device when 

packaging. The primary advantage of the SUMMiT process is that it incorporates a 

chemical mechanical polishing (CMP) step into the creation of the final sacrificial oxide 

layer. This results in an extremely smooth surface suitable for optical applications. It 

also utilizes a more advanced photolithography process, compared to the MUMPs™ 

process, allowing smaller minimum feature sizes for each layer. In addition, the 

polysilicon layers are nearly stress free. As can be expected, these more advanced 

features make the process more expensive, roughly $10,000 for a 0.5 cm square die. It 

also requires a much longer time to etch the sacrificial oxide layers (anywhere from 15- 

45 min) in a similar HF solution. 
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Figures 2-6 and 2-7 graphically outline the various layers used in the MUMPs™ 

and SUMMiT processes respectively. Further details on the processes and their 

corresponding design rules can be found in design rule handbooks [12, 26]. 

METAL (gold, 0.5 micron) 

Boly 0 fQid HiicEQö) 
Silicon Nitride (0.6 micron) 

Substrate 
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Figure 2-6. Outline of deposition layers for MUMPs ™process 
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Figure 2-7. Outline of deposition layers for SUMMiT process 
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77/. Characterization of the Line-Addressable Micromirror Array 

"In theory, there is no difference between theory and practice. But, in practice, there is." 

- Jan LA. van de Snepscheut [38] 

3.1 Overview 

The first step in designing a control system for the LAMA device is 

understanding its relevant properties and characteristics. The most obvious of these is its 

physical structure which is described in Section 3.2. It is particularly necessary to 

explore the electromechanical response of the individual micromirror elements. Section 

3.3 describes the models used in this work to accomplish this analysis. Section 3.4 

explores the device's functionality as a bi-stable phase modulator by describing a model 

of its optical response in the far-field. Finally, Section 3.5 describes an experimental 

method, known as the static fringe method, for estimating the deflection response of an 

individual element under DC conditions. 

3.2 Micromirror Array Design 

The line-addressable micromirror arrays used in this study are electrostatically 

piston actuated, each consisting of 32x32 elements with structure similar to that described 

in Section 2.3 (see Appendix E for actual design layout). However, as explained in 

Section 2.6, the actual cross sections for MUMPs™ and SUMMiT devices are 

significantly different. These are shown in Figure 3.1 and 3.2 respectively. 
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The dimples shown in Figures 3.1 and 3.2 are added to prevent suction of the 

flexures to the substrate during release. They also help prevent the upper and lower 

plates of the micromirror element from shorting during operation. However, one major 

flaw in the LAMA design, is that these dimples are not spaced evenly at all four corners 

of the element. They are spaced only at two opposing corners. Thus if an element is 

snapped down towards the substrate such that the dimples touch, the element can (and 

does) actually tilt in one of two diagonal directions. Thus these prototype LAMA chips 

would not make very good phase modulators in a practical setting. However they do 

suffice for experimental use in demonstrating line-addressing. Also note the etch access 

holes in Figure 3.2. These are not necessary in the MUMPs™ design because the fill 

factor is much smaller and the sacrificial oxide is more easily removed. 

While these cross sections are indeed important in predicting the device's 

behavior, what truly makes the LAMA unique compared to other micromirror arrays is 

how the elements are connected together. All the bottom plates are connected in one 

direction by "columns" and all the upper plates are connected together by "rows" using 

the flexure beams as interconnects, making the design line-addressable. Figure 3-3 

shows a schematic of this arrangement. 
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Figure 3-3. Schematic of LAMA element connections 

A better grasp of the aforementioned structure can be gained by viewing the LAMA 

devices themselves using a Scanning Electron Microscope (SEM). Figures 3-4 through 

3-6 show overhead SEM micrographs of the MUMPs™ LAMA device. Figure 3-7 shows 

a SUMMiT LAMA device for visual comparison. 
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Figure 3-4. Overhead SEM photograph ofMUMPs ™LAMA device 

Figure 3-5. SEM photo ofMUMPs ™LAMA elements 
Photo orientation shows rows connected in the vertical direction. 
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Figure 3-6. SEM photo ofMUMPs ™LAMA elements with top mirror plates removed 
Photo orientation shows rows connected in the vertical direction, with POLY 0 columns connected 
across horizontally underneath. Note rows are connected from opposite sides of the package in an 

alternating fashion. 
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Figure 3-7. SEM photo ofSUMMiT LAMA elements 
Note existence of hole and high fill factor compared to MVMPs ™ device. 
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3.3 Electromechanical Model 

Understanding how the individual elements will respond to an applied voltage is 

essential in successfully implementing any form of control system. Thus a great deal of 

research has been accomplished in the development of models which accurately describe 

the mechanical response of electrostatically driven MEMS devices, especially in the area 

of micromirror arrays [17, 22, 30]. Section 3.3.1 describes static DC voltage response of 

an electrostatically actuated micromirror element initially proposed by Lin [29]. Section 

3.3.2 describes the electromechanical bi-stability property that is essential in realizing 

any form of line-addressable bi-stable control, and continues to be an active area of 

mathematical modeling research [34]. Section 3.3.3 provides a simplified frequency 

analysis for a single electrostatic micromirror element, in an attempt to provide an 

introductory understanding into the dynamic aspects of the system. 

3.3.1    Static DC Voltage Response Model 

We begin our analysis by first examining the micromirror element as a parallel 

plate capacitor. The definition of capacitance for this structure, neglecting any electric 

field fringing effects at the edges of the plates, is given by 

C = ß- = MÄ, {3-1} 

where q is the stored charge, V is the instantaneous voltage across the capacitor, A is the 

overlapping area of the two plates, dgap is the separation of the plates at equilibrium, and 

Er is the dielectric constant or relative permittivity of the material between the plates 
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compared to the permittivity of free space, e0. By noting that the displacement current 

thru the capacitor is, i = C—, the instantaneous stored energy, W, contained within the 
dt 

capacitor's electric field can be found by integrating the instantaneous power supplied, 

P = Vi, yielding the following relation: 

1 11^ 

W = \Pdt = \cVdV =-CV2 + Xml=-CV2 =-^- {3-2} 

where the constant of integration, Xint = 0, since there is no electric field to store energy 

when V = 0 [5]. The instantaneous force, F, in a given direction on the top plate can then 

be found by taking the derivative of the stored energy with respect to the coordinate 

direction in which the energy was stored. This is done in the following expression [30]: 

r= dW =ldCV2 ^   lere0AV2 {3 3} 

Ww    2dd
gap       

2    dl 

The negative sign in Equation {3-3} implies that the force is directed downwards since I 

initially defined the plate separation distance as a positive value above the bottom plate. 

For an equilibrium deflection to be maintained this downward force must somehow be 

balanced be another opposing upward force. The mechanical flexure beams provide this 

upward balancing force, Fs, and can be modeled collectively as a single spring with a 

spring constant k, such that 

Fs=kAx = k(dgap-x) {3-4} 
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where Ax is deflection distance of the top plate and x is its resulting height above the 

bottom plate. By realizing that dgap in Equation {3-3} should now be replaced by 

d a - Ax with the introduction of a spring, an expression for Ax as a function of 

instantaneous voltage, V, can be generated by setting this modified version of {3-3} 

equivalent to {3-4} and solving for Ax [29]. Doing so yields the following expression 

for Ax: 

AEEV
2 

Ax= or r {3-5] 
2k(dea -Ax)1 

gap 

It is important to note that this equation was derived for instantaneous voltage, which by 

definition does not change with time. Thus, it is also valid for any applied constant DC 

voltage. However, when the applied voltage is a function of time, Equation {3-2} and 

thus Equation {3-5}, is no longer valid. Deviation from this DC model increases as the 

frequency content of the input voltage increases. However, when the frequency of the 

applied voltage signal is periodic and greater then the mechanical cutoff of the device this 

equation will hold true by setting the rms voltage of the signal, Vrms, equal to the applied 

voltage V. Once again though if this rms voltage is set as a variable function over time 

then Equation {3-5} no longer holds true. 

Also important to note is that Equation {3-5} is only accurate for Ax roughly less 

than d a /3. Deflections greater than dgap 13 gap generally become unstable and exhibit 

an effect called "snap-down" or "snap-in". This effect is attributed to the fact that the 

electrostatic force increases much more rapidly than that restoring force of the springs as 
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the deflection increases [12]. The following section explains this property in further 

detail. 

3.3.2   Electromechanical Bi-stability 

The effect of "snap down" actually introduces more than just a sharp discontinuity 

to the static deflection response model presented. In fact, it introduces an extremely non- 

linear hysteresis response effect, which we can make use of in controlling the LAMA 

device. It has been observed that when an element is "snapped-down" by the application 

of a voltage greater then the snap down voltage, it will actually remain snapped down 

until the applied voltage is brought to a voltage level much less then the original snap 

down voltage, which is appropriately called the "snap-up" voltage. Figure 3-8. 

illustrates this effect graphically by showing idealized response curves for the 

"attraction" and "release" cycles. 
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Figure 3-8. Idealized plot of element height vs. applied voltage for a micromirror 
The attraction and release cycles indicate a hysteresis in the device response. 
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In addition, while the snap-down voltage will remain constant, the snap-up voltage will 

vary if the initial applied voltage is stepped greater than the snap-down voltage. For 

instance, if snap-down voltage is 25 Volts, and the applied voltage steps from 10 Volts to 

27 Volts, the snap-up voltage will be larger then if the applied voltage steps from 10 

Volts to 31 Volts. This effect occurs because while the amount of stored charge increases 

linearly, as stated by Equation {3-1}, the electrostatic attraction upon snap-down 

increases in a non-linear fashion with charge. This is an important effect to note since the 

PWM signals applied by the control system described later in Chapter 4, are a continuous 

stream of stepped voltages. However, if a certain fixed applied voltage step is chosen to 

induce snap-down, the snap-up voltage should remain relatively constant. Thus the 

potential exists for a system were an element can retain its position for a varying voltage, 

as long as this voltage falls between snap-up and snap-down. This region can be thought 

of as a mechanical hold region for the element. 

A significant amount of research has been driven towards eliminating this snap- 

down instability in an effort to increase the operating region of micromirror and other 

electrostatically controlled devices. Specific efforts in implementing voltage control and 

capacitive feedback have also been tried [7, 34, 41]. The most recent success has been 

achieved by Chan et al [6]. However, this effect has yet to be fully mitigated and still 

remains an active area of research. 
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3.3.3   Frequency Analysis 

While the static model described by Equation {3-5} is of considerable use, and 

can actually provide a reasonable estimate of deflection for low frequency input, an 

understanding of the device limitations requires a more complete model of the system for 

time-varying voltage input. A common approach to modeling electromechanical systems 

such as the LAMA device is to conduct what is called a lumped-parameter analysis of the 

system. Such an analysis implies completely describing the system by a set of linear 

constant-coefficient differential equations. Such a system is said to be linear time- 

invariant (LTI) and its output can subsequently be solved using linear algebra matrix 

methods. 

Constructing such a model and solving its system of equations was beyond the 

scope of this thesis. However a great deal of insight was gained by simply exploring the 

frequency response of the electrical and mechanical system separately. Figure 3-9. shows 

an overview of how separate electrical and mechanical models of the micromirror system 

could be integrated into a larger analysis. An excellent reference on how to conduct such 

an analysis for the system as a whole, particularly through the use of Langrage's 

Equation, is provided by D'Azzo and Houpis [15]. 
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Figure 3-9. Overview of proposed electromechanical model for electrostatic micromirror 

Mechanical Model 

A simple way to model the frequency response of the mechanical portion of the 

micromirror system is to describe it in terms of a second-order mass-spring system. This 

model consists of a mass (the top mirror plate), suspended by a spring (flexure beams), 

and a dampener, which would represent any viscous dampening caused by motion 

through the air in the gap between the plates. Figure 3-10 shows a schematic depicting 

such a system. 
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The differential equation describing the dynamic response from an arbitrary forcing 

function, Fexlerna! (t), is. 

M^ + B^ + kx = Fexlemal(t) 
at        at 

{3-6} 

where M is the mass, B is the dampening coefficient, and k is the spring constant. By 

setting Fextema!(t) equivalent to the unit impulse function u0{t), and taking the Laplace 

transform of both sides of Equation {3-6}, the transfer function, H(s), of the system can 

be described as [28]: 

H(s) = 

J_ 
M Y{s)  

X(s)      2    B       k AKiJ    s2+ — s + — 
M      M 

KoT 

si+^s + v2 

Q 

{3-7} 
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where s is the complex frequency, X (s) and Y(s) are the transforms of the system inputs 

and outputs respectively, K is the DC gain factor, (00 is angular natural frequency, and Q 

is the quality factor, which is a measure of system losses. Expressions can be found for 

these later three variables through appropriate equating of the coefficients [28]. 

1 
K-- 

"k 

j T 
«\ = .i — 

V M 
M 

Q-- --®o B 

[3-8} 

Equation {3-7} basically depicts the mechanical system as a second-order low-pass filter, 

where the Equations {3-8} describe its frequency characteristics. 

There are three possible homogeneous solutions (Fextemal = 0) to Equation {3-6}, 

depending on the values of k and B. These are commonly termed the "over damped" (B 

> k), "under damped" (B < k), and "critically dampened" (B = k) solutions. The under 

damped case will produce a decaying oscillation about the equilibrium point, while the 

other two cases will exponentially decay towards it [36]. 

It has been widely reported that the resonant frequency of MEMS devices can 

actually shift with the application of a DC bias voltage [44]. Thus, the non-angular 

resonant frequency, f0, is more accurately described by 

f =—Jk   kydc {3-9} Jo    2n\    M 

where kVdc is the amount of spring constant lost with the application of a DC bias voltage. 

40 



The mass M of the top plate can calculated using 

M=pAT {3-10} 

where p is density of polysilicon used to construct the layer, A is area of the plate, and Y 

is the thickness of the layer. Note for the SUMMiT device the mass of both top plates 

should be calculated separately and then summed together. 

Electrical Model 

A similar approach can be taken for modeling the frequency characteristics of the 

electrical model. In fact if modeled as a simple RLC circuit the transfer function would 

be nearly identical in form to that given by Equation {3-7}. However, with little 

additional effort a more complete model was derived for this thesis by accounting for all 

the parasitic capacitances inherent in the micromirror circuit. A schematic of such an 

electrical model is depicted in Figure 3-11. 
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Figure 3-11. Schematic of higher-order electrical model of a micromirror 

For accurate modeling of an element in the LAMA device, the array actually needs to be 

modeled as a whole since every column affects a part of every row and vice-versa. 

However, since the columns are only providing a sweeping pulse select (see Chapter 4), 

whose frequency content is most likely much less then that of the rows, a fairly good 

approximation for the LAMA device would merely look at the response of an entire row, 

with the all the voltages on the bottom plates of the overlapping columns set to the same 

voltage level. With this approximation the device model consists of 32 single element 

models (dashed box in Figure 3-11) in series. This would be the worst case scenario in 

terms of frequency response since it maximizes the capacitance and series resistances 
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seen by each signal. Thus, it becomes a useful model for designing any future LAMA 

devices. 

This electrical model can be analyzed by accomplishing a nodal analysis and 

utilizing matrix methods to solve for a response, which can then be translated into a 

transfer function as before. However solving such a large network by hand is a mind 

numbing exercise, therefore its is easiest to accomplish a frequency analysis using an 

electronic simulation package such a SPICE. 

While the development of a complete model is well beyond the scope of this 

thesis, it is worthwhile to note some of the effects such a model could account for. These 

effects would include surface variations in the plates, a mapping of the force distribution 

across the top plate, corresponding deformations induced across the plate as deflection 

varies, fringing effects in the electric field, coupling between adjacent elements, snap- 

down and snap-up instabilities, parasitic capacitances inherent in the device, transmission 

line effects inherent in packaging, and an accurate formulism depicting the transient and 

frequency response of the mirror, to name a few. Compile this list of effects with a 

variety of mathematical methods that can be used to analyze their effects and one 

becomes quickly aware of the challenges inherent in developing a rigorous model. A 

variety of computer simulation programs, such as IntelliCAD™ and ANSYS, which 

utilize finite element techniques, have been constructed in contribution to these research 

efforts [44, 46]. The development of an accurate model is a valuable exercise because it 

will allow more accurate testing and simulation of MEMS device performance prior to 

fabrication. In a commercial setting modeling saves MEMS device development costs, 
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and speeds research efforts. Hence it remains a challenging problem in the applied 

mathematics community. 

3.4  Device Modeling in Optical Far-field 

Another important characteristic of the array to consider is how it can potentially 

act as a bi-stable phase modulator. More specifically, it is useful to model the far-field 

distribution of a laser beam, reflected off of the surface of the micromirror array. 

Undeflected, the mirror array essentially acts as an aperature function, t0(g,rj), 

defined two-dimensionally as follows, 

t„&ri) = 
£ ^ ! _,£ n\„„.,£   V rect(—, —) ® — comb(—, —) rect(^-,^-) {3-11} 

V  W "a  a'    d d  d 

where a is width of the elements, d is period between elements, ® denotes convolution, 

W is the width of the entire array, and £ and r\ are the horizontal and vertical coordinates 

in the plane of the aperature. Equation {3-11} is an accurate description of the 

micromirror array since the light incident on the spaces between mirror elements 

undergoes so much diffraction passing through the slit virtually none of it is reflected. 

Assuming the incident laser is a perfectly monochromatic plane wave of unit amplitude, 

the far-field pattern of the reflected field is simply the Fourier transform of this function. 

This translates to the following intensity profile described by, 

I(u,v) 
r   2 .      ,     U V s , , „  M      ,   V    ^ 

a sinc(a—,a—)comb(d-—,d—) 
Ar    Ar Ar     Ar 

®smc(W-^-,W-^-) 
Ar      Ar 

{3-12} 
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where r is the distance from the mirror, and u and v are the horizontal and vertical 

coordinates in the image plane [18]. 

When the mirror array is set to hold an arbitrary bi-stable phase pattern the 

aperture function can no longer be described by an analytical formula. Thus computation 

of the far-field pattern requires a discretized analysis of the system. This essentially 

involves generating a complex phase map to represent the positioning within the array 

and then running a discrete Fourier transform algorithm, such as a fast-Fourier transform 

(FFT), to generate a projected far-field pattern. This can be easily accomplished using a 

simulation software package such as MATLAB . 

3.5   Static Fringe Method 

The experimental method used to estimate the total spring constant of the flexure 

beams that support the micromirror elements is termed the static fringe method. This 

method uses the positioning of fringes produced by the devices when seen through a laser 

interferometric microscope. The fringe pattern seen on the microscope is effectively the 

result of constructive and destructive interference of the light reflected off of the device 

with that of the reference beam internal to the interferometer. The fringe spacing is 

determined by relative tilt of the device with respect to the incident laser light. The 

amount of phase accrued by the laser light reflected off of the device directly relates to 

the position of the fringes. When an element on the mirror is deflected, a certain amount 

of phase delay is accrued in the light reflected off of that element with respect to the other 

elements (this is the definition of phase modulation). This phase delay is seen as a 
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shifting of the fringe lines of that element with respect to the fringe lines of the other 

elements. When a mirror element is deflected such that the phase delay accrued by the 

reflected light is 2TT radians its fringe lines will be shifted such that they overlap their 

original position when the element was undeflected. Thus at these deflections the fringes 

across the surface will remain static or unchanged with respect to zero deflection.   The 

27t phase delay translates to a change in distance of one wavelength, X, of the light being 

reflected. So the actual amount of deflection at this state, dubbed the static fringe 

deflection dstatic, will be 

d   . =- {3-13] "static        r, l ' 

Using this knowledge, one can experimentally step up the DC voltage difference 

across a set of elements until this static fringe phenomenon is observed, and then record 

this voltage. From Equation {3-13}, given the knowledge of the actual wavelength of the 

laser light the static fringe deflection can be obtained. This value and the recorded 

voltage can be used to estimate the total spring constant of the mirror elements by 

applying Equation {3-5}. This in turn allows us to use Equations {3-5} and {3-8} to 

project a static deflection response for DC voltages and estimate the resonant frequency. 
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IV. Theory and Implementation of Line-Addressable Control 

"Make everything as simple as possible, but not simpler." 

-Albert Einstein (1879-1955) [38] 

4.1 Overview 
The design and implementation of the control system for the LAMA device is the 

heart of this thesis. Initially, three modes of operation of the device were conceived. 

Each of these is described in detail in Section 4.2. The actual control system 

implementation used to accommodate each of these modes, and each of the system's core 

building blocks is described in Section 4.3. 

4.2 Theory of Line-Addressable Operation 

Bi-stable control of individual elements in the LAMA device is predicated on the 

electromechanical bi-stability inherent in the micromirrors as described in Section 3.3.2. 

Specifically, I conceived of two separate control modes that utilize this property. The 

first is based on a scheme first proposed by Jaecklin for a line-addressable tilt array [24]. 

This mode allows the application of an arbitrary static bi-stable pattern, however requires 

the array to be reset to its original position before a new pattern can be applied. The 

second is an original scheme that eliminates this difficulty, allowing dynamic switching 

between patterns. In addition, this second mode affords additional benefits upon 

implementation. Each of these modes are respectively described in Sections 4.2.1 and 

4.2.2, respectively. 
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The primary limitation inherent with each of these bi-stable control modes is that 

they require operation below the mechanical cutoff frequency of the device. Section 

4.2.3 discusses the possibilities afforded with operation above the mechanical cutoff. 

4.2.1    Conventional Bi-stable Operation 

In the first mode of operation, two different sets of PWM signals are applied to 

the rows and columns of the LAMA device. Both of these sets of signals operate at the 

same frequency, / , which is below the mechanical cutoff of the device. Figure 4-1. 

provides an example pair of these signals that will be referred to for the remainder of this 

discussion. Although the LAMA device described in Chapter 3 is square, it will become 

apparent that this scheme can be applied to any arbitrary MxN rectangular array with a 

similar structure. 

In this mode, the PWM signals applied to the rows are at a DC offset above that 

of the signals applied to the columns, however the difference between active and inactive 

states for each signal is not necessarily the same. This is done to maintain a net voltage 

difference across the individual elements such that the electric field is always directed 

towards the substrate. The substrate itself is held at the active state voltage of the 

columns. This is done to minimize the voltage difference between the bottom mirror 

plate and the substrate, as well as reduce the voltage difference between the hidden 

flexure beams and the substrate. 
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Figure 4-1. Example PWM signals for conventional bistable operation. 
An arbitrary row voltage signal (a) and column signal (b) produce the voltage difference signal (c)for 

the intersecting element. In (c), SD indicates snap down state, GND indicates ground (0 Volts), and HI, 
H2, and H3 indicate each of the hold states. In this example element (m,n) is positioned in the snap 

down position, where Vsd represents the snap down voltage. Note the time the column signal spends in 
the low state has been exaggerated to ease visualization. 
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The column PWM signals, VC0L(n), are applied as a means of scanning across the 

array and isolating each column separately for a specific period of time. Thus they each 

have the same duty cycle, DutyCycleC0L, defined as 

DutyCycleC0L=— {4-1} 

where N is the number of columns in the device. Adjacent column signals are separated 

by a temporal phase difference, ArC0L, defined as 

ATC0L = DutyCycleC0L -T {4-2} 

where T is period of each signal (T = 1/ /). 

The PWM signals applied to each of the rows, Vrow(m), effectively determine 

which elements in that row are snapped down and which remain in the upright position. 

This becomes apparent when one looks at the voltage difference seen by an individual 

element, Velemem(mn), as shown in Figure 4-1 (c). The voltage difference between the 

plates of an individual element can have 4 possible states. The first of these is called the 

snap-down state, since the voltage difference is greater than the snap down voltage Ysd 

and causes an undeflected element to assume its snapped down position. It is important 

to note that this state can only occur when the column state is low, which is how 

individual element selection is accomplished. The remaining three states are all labeled 

as hold states since the voltage differences associated with each state are all in between 

the snap up, Vsu, and snap down voltage levels. Thus once an element experiences a snap 
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down state it remains snapped down. However, the undeflected elements will experience 

a significant amount of "wiggle" as the voltage difference between plates varies. Thus, to 

hold the pattern with minimum "wiggle" in the elements, all the row signals should be set 

to a constant low state, Vri, after the pattern is applied. To completely reset the array 

such that all elements are undeflected, one can either raise the active state of the column, 

Vch, such that Vri-Vch is less then Vsu,or completely ground both sets of signals. 

Using the signal definitions shown in Figure 4-1., the aforementioned conditions 

for each of these four states is summarized by 

Vrh-Vcl>Vsd^SD 

vsu<vrl-vch<vsd^m 
Vsu<Vrh-Vch<Vsd->H2 

Vsu<Vrl-Vcl<Vsd-+H3. 

These conditions are greatly simplified when Vci is set to ground (OV) and states H2 and 

H3 are set equivalent to each other by setting the voltage difference, A, between high and 

low voltage states, equal for the rows and columns [ A = (Vch -Vcl)=Vch = (Vrh -Vrl)]. 

Under these conditions Equation {4-3} simplifies to 

Vrh>Vsd^SD 

Vsu<Vrl-A<Vsd^Hl {4-4} 

Vsu<Vrl<Vsd^(H28cH3). 

Since reliable operation is dependent upon these conditions, it becomes apparent why 

accurate characterization of the snap up and snap down voltages of the LAMA device is 

important. 
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4.2.2   Enhanced Bi-stable Operation 

In the second mode of operation two similar sets of PWM signals are applied to 

the rows and columns of the LAMA device. The theory for this mode also extends to any 

MxN array. The row and column signals applied, in this mode, are identical in function 

to those described for the previous mode, so Equations {4-1} and {4-2} continue to hold. 

The difference is that both sets of PWM signals are applied with their low states set to the 

same voltage level, Vri = Vci- The obvious choice for this uniform low state is ground, 

which is how the example signals are presented in Figure 4-2. 

The voltage difference between active and inactive states is not the same for these 

signals. In addition, since the electric field is not always directed towards the substrate, 

the substrate is also grounded. This is done to prevent any voltage difference between the 

top mirror plate and the substrate from having any significant effect on the control of 

each element. 

The primary advantage of this mode over the previous is that it allows dynamic 

switching between patterns. Once again this becomes apparent when viewing the voltage 

difference seen by an individual element, as shown in Figure 4-2. (c). In addition, since 

the signals are all referenced to ground and some other high state the direct CMOS 

method of amplification can be used. This affords a simpler more efficient means of 

amplification. 
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Figure 4-2. Example PWM signals for enhanced bistable operation. 
An arbitrary row voltage signal (a) and column signal (b) produce the voltage difference signal (c)for 

the intersecting element. In (c), SD indicates snap down state, SU indicates snap up state, GND 
indicates ground (0 Volts) and HI and H2 indicate each of the hold states. In this example element(m,n) 
is first positioned in the snap down position, where Vsd represents the snap down voltage and then it is 
snapped back up. Note the time the column signal spends in the low state has been exaggerated to ease 

visualization. 
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Based on the signal definitions supplied in Figure 4-2. the conditions for 

operation in this mode can be defined by Equations {4-5}. 

(yrh-Vcl)>Vsd->SD 

{4-5] 
vsu<(vch-vrl)<vsd^m 
V5U<(Vrh-VJ<Vsd->H2 

(vrl-vd)<vsu->su 

The primary drawback for this system is that once again there is potential for "wiggle" in 

elements that are not snapped down. For the previous mode, this is not a difficulty since 

once a static pattern is set, the row signals are turned off and only a slight "wiggle" is 

introduced by the column scan. If absolutely necessary, this "wiggle" in could be 

eliminated by turning up the frequency. In this mode, however the "wiggle" truly matters 

since we want the signals to be applied continuously to allow dynamic changing of 

patterns. Thus to eliminate any "wiggle" the active states of the row and column signals 

can be set such that H1=H2. By algebraically solving Vch -VH = Vrh -Vch for Vch, and 

setting the low states equal to ground, a simplified set of conditions for "no wiggle" is 

found: 

Vrh>Vsd^SD 
f \r  \ 

K„< 
V Z J 

<Vd->Hl,H2 {4-6} 

Vcl=Vrl=GND-^SU 

It is important to note that the rest state assumed when the mirror elements are not 

snapped down is not completely undeflected, unlike the previous mode. The mirror 

elements in the "up" state are deflected according to the hold voltage. However, since 
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the mirror response is nonlinear it is likely that the extent of this deflection may not be 

significant. Of course this is entirely dependent upon the application in which this device 

would be used. 

4.2.3   Operation Above Mechanical Cutoff 

The previous two modes of operation provide the ability to apply arbitrary bi- 

stable patterns to the LAMA device. However, the inherent limitation in these modes is 

that they must both operate at a frequency below the mechanical cutoff of the 

micromirror device. There may be applications were the ability to operate at higher 

frequencies is imperative. Therefore it is worthwhile to explore the potential patterns that 

can be applied by varying the rms-voltages applied to each line. 

The analysis begins by assuming that we are dealing with DC line voltages for 

simplicity. Any actual implementation would utilize PWM signals, whose rms-voltage, 

as defined by Equation {2-9}, would take the place of these DC signals. The manner in 

which this is done is inconsequential, and can be modeled as applying various DC 

voltages to the device. Specifically our analysis will focus on how the line voltages 

applied to the array overlap to produce a differential voltage pattern across the array. 

We begin by first defining the input voltages to a line addressable MxN array as 

vector quantities: 
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V    = row 

a. 

a m+\ 

a, m+2 

a„ •+M 

{4-7] 

Vcoi=[K  Kx  K+2  - K+N] 

where Vrow and Vcol are the vectors defining the row and column voltages respectively. 

To compute the voltage difference between elements across the array, we define the 

matrix operation "H" as follows: 

*rovF~'   cd        array ' 

\am-bn\ \cL-h 

\am¥M    tyi\    \am¥M    tym\ 

\am    nn-W| 

\anrY\ ~brt¥N\ 

\am¥M    ^n+W 

^rrm Sn.n+1       "*       Cm,n+N 

^m¥M,n     ^nWM,m\     '"    Cn*M,nvN 

{4-8} 

where Varra is the differential voltage map across the array. If we assume a steady state 

solution and that these are DC voltages we can recursively apply Equation {3-5} to each 

element in Varra  and generate a deflection map for the array. However, since iterating 

solutions for each element would be computationally intensive, a faster method of 

generating a deflection map would be through the use of a pre-generated lookup table 

listing the deflection response for a specified voltage. 

Figure 4-3. shows a simple voltage ramp across the rows as an example 

differential voltage map. Figure 4-4. shows the corresponding deflection map that is 

created using the above method. Both were created using the MATLAB® code included 
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in Appendix G which performs the above analysis for any set of line inputs for the 

LAMA device. 

3D bar chart indicating row voltage ramp distribution across LAMA 

Columns Rows 

Figure 4-3. 3D bar chart indicating example differential voltage ramp across LAMA. 
The map corresponds to a voltage ramp across the rows with the columns grounded. 
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3D bar chart indicating deflection response to row voltage ramp distribution across LAMA 

Columns 
Rows 

Figure 4-4. 3D bar chart indicating a SUMMiT LAMA device response to a differential voltage ramp. 
The deflection response was estimated for a static fringe voltage of 26V. 

It should be apparent that such a ramp can be generated in 8 different directions 

across the array (up, down, left, right, and four diagonals), when both positive and 

negative voltage are used. The appearance of negative voltages can be achieved through 

purely positive voltages by raising the voltage level applied to the substrate. Thus the 

LAMA device can potentially be used in small-angle beam steering applications. More 

aggressive beam steering can be accomplished by having the LAMA device function as a 

reflective rectangular phase grating, where the width of the grating can be adjusted. 

Several other additional patterns can be created by manipulating the line inputs and 
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applying Equation {4-8}. All of these patterns can manipulate the reflected far-field 

pattern of a laser which makes operation above mechanical cutoff potentially useful in an 

optical communication system. 

4.3   Control System Design and Implementation 

To experimentally demonstrate LAMA device operation in each of these three 

modes, an appropriate control system utilizing PWM signals was developed. Its concept 

and architecture was initially devised in part by W. Cowan and can be separated into 

three main parts. The first part is the software component, described in Section 4.3.1. 

The software allows the user to create, load, and save any desired bi-stable deflection 

pattern and subsequently apply it to the micromirror array when desired. The second part 

is the PC controller board, which generates the the PWM signals as defined by the 

software. Section 4.3.2 describes the details in its design. Finally, to achieve the 

voltages necessary to achieve actual deflection these PWM signals must be amplified 

before they are applied to the LAMA device. Section 4.3.3 describes the pulse 

amplification board to which the actual micromirror device is mounted. Figure 4-5 

shows a graphical overview of this system. 
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Figure 4-5. Overview of Experimental Control System Design 

4.3.1    Software Interface 

Many of the applications in which micromirrors are utilized require high speed 

control and the obvious method of achieving this is by using a digital computer. Pulse 

width modulation, as previously explained in Section 2.5, can be easily accomplished 

using digital logic. To generate the PWM signals needed, the shape of the pulse streams 

is stored in the computer memory, which is then transferred to the memory on the PC 

Control Board. This memory is physically created using CMOS logic. To generate 

physical signals once a pattern is downloaded to memory, the electrical contents of that 

60 



memory are streamed out. The function of the software interface of course, is to store the 

appropriate patterns to memory. 

The software control interface designed for the LAMA device is appropriately 

called LAMACON. It is designed to run in a Windows 95/98 operating system on a PC 

platform and consists of two parts. The first is a Graphical User Interface (GUI) that 

offers simple point and click control for the user. This allows the user to choose which 

mode of operation is to be tested. Specifically, the options include setting the array low, 

setting the array high, applying a forward-slash pattern to the memory for testing, 

applying voltage ramps across the rows of the device (to test operation above cutoff), and 

finally independent bi-stable operation. This final selection allows the user to create, 

load, and save arbitrary bi-stable patterns and then apply them when desired. Since it can 

directly switch from one pattern to the next, both bi-stable modes of operation can be 

tested. Figure 4-6 shows the splash screen that appears on start up and Figure 4-7 shows 

the actual GUI environment as seen by the user. 

Line Addressable Micromirror Array 
Control Enuironment 

'■ ltersiunl.1        a ., • 

Created by 2d LWH arris J;: H all U SAF.''. 
, Air Force Institute of Technology 

Released 12.,November 2000 
Chailie the Uama   '.::;' yX!^ :Vh^  \>;''": 

NOTE ThaUmtecfStatesAirFarcectoBsnotm any wayoMaa/Zysponssr   " 
GharffB the Üama01-any'ofMsfi/mmafuhg'endea^prs.. Formare info about 

•   Char/ievtsilwwwchar/iBthe//ama,com// ' 

Figure 4-6. Image of LAMACON Splash Screen 
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Writing Forward Test Slash Signal Pattern to Memory [CF000 .CFFFFJ 

Figure 4-7. Image of LAMACON GUI screen. 
This view indicates the application of a forward slash test pattern. "X's" displayed across the array 

signify a bistable pattern is not being applied. 

The second part of LAMACON is a series of MS-DOS executable files that are 

called by the GUI to physically download these patterns to memory. These executable 

files were created using Borland C++ version 3.1 and make use of its exclusive pokeb() 

function. The actual C++ code used to generate them can be found in Appendix B. The 

pokeb() function allows direct assignment of 8-bit character type data to physical 

memory. It is important to note that this type of operation is not possible using the 

Win32 Application Program Interface (API) that is included with Windows 95, which the 

GUI is designed to use. Microsoft intentionally designed its Win32 API to prevent 
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programmers from tampering with the physical memory. Instead they created a virtual 

memory management system that gives programmers control over virtual memory blocks 

which are then allocated to physical memory in a manner best suited to optimize 

execution efficiency. While this type of memory management system has several 

benefits associated with it, the one drawback is that it prevents any direct access to 

hardware. The design of any and all device control requires the use of a Device Driver 

Kit (DDK) under the Win32 API. Since DDK design can be a complicated venture to the 

casual engineer, the use of a series of MS-DOS based executables was deemed the most 

practical alternative for this work. While separately calling these executables from the 

GUI is sufficient for laboratory testing purposes, it remains a rather roundabout method 

of control. Thus DDK design is an important facet to explore with regards to any future 

form of system optimization. Further details on Win32 memory management can be 

found in Toth's online book Visual C++ 4 Unleashed [45]. 

The GUI was constructed using Microsoft Visual Basic 5.0 and consists of a form 

module, which defines the layout of the controls and their corresponding event 

procedures, and an additional function module. This function module contains a library 

of functions that accomplish all file I/O and necessary calling of external executables. 

Appendix A includes all the relevant functions and event procedures used in its 

construction. The actual form file that defines the main control form is not presented in 

its entirety since it would include hundreds of pages of automatically generated code 

defining the layout. As a testament to how much layout code actually exists in these 
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form files, the frmSplash.frm file, that merely defines the splash screen shown in Figure 

4-6 is also listed in Appendix A. 

In the bi-stable mode, the GUI interprets the array pattern as an array of l's and 

O's indicating deflected and undeflected states respectively. When saved to disk, the 

array is stored as an ASCII text file with the *.pat extension, where each row is a separate 

line and each element is space delimited. This allows the pattern to be easily interpreted 

for use in other programming environments, such as MATLAB®, which the far-field 

simulation code is written in. For the 32x32 pattern to be downloaded to memory, the 

data must be appropriately converted to a series of 8-bit segments for the pokeb() 

function to interpret in the MS-DOS executable file. This process is accomplished by the 

createliasonfileO function in the modLAMAfunctions.bas module which is part of the 

code contained in Appendix A. First, the 32x32 pattern array is transposed [element (i, j) 

-> element (j, i)] to compensate for the fact that Visual Basic uses column major ordering 

for its arrays while the C++ derived executables use row major ordering. Next, each row 

in this transposed 32x32 array is repeated 32 times yielding a 1024x32 array. The 

memory allocated for this system actually permits 32 discrete levels of pulse width for 

each segment of row signal that is designated for each column. For bi-stable operation 

however we do not need this feature, and will merely set the pulse width to either its 

maximum value or its minimum value. Next, the rows in this 1024x32 array are 

sequentially read across in 8-bit word segments, in a serial manner. These 8-bit word 

segments are then stored as integers in a 1-D character array that is 4096 entries long. 

Finally, this character array of integers (which range from 0 to 255), is written to a 
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separate ASCII text file. This text file acts as a liason between the GUI and the MS DOS 

executable file that subsequently reads in the text data and uses the pokeb() function to 

download the data segments to memory. This entire process is outlined in Figure 4-8. 

32x32 bi-stable pattern array Transposed 32x32 bi-stable pattern array 

\|/ 

1                            ■"—^» Lolumns                    ——-^ r> ~ ... ,                                —--^ 

Each row's data is 
repeated 32 times for 

given column 

1024x32 data array 

Rows     

1 -D 4096 data array of integers 
(ranging from 0 to 255) 

8 bit binary segments 
converted to integers 

8 bits     8 bits     8 bits     8 bits 

Executable links with text file 
and downloads pattern to memory 

Column 1 
Data 
Segment 

Figure 4-8. Outline of software array manipulations for bi-stable pattern loading 
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The forward slash test pattern and the two voltage ramp patterns are applied 

directly by their executable files through direct variation of these 8-bit word segments. 

For the voltage ramp patterns, the frequency content of the PWM signals is maximized 

by utilizing these 32 discrete levels inherent within each column data segment. 

4.3.2   PC Control Board 

The PC Control Board receives as inputs the memory block (4096 word x 8 bit) 

previously defined by the software interface and converts it into actual PWM streams that 

are applied to the rows and columns of the micromirror device. The board is constructed 

from a JDR Microdevices 16-bit prototype board, which inherently includes much of the 

I/O decode logic necessary for use in an IBM PC-AT based architecture. Details on the 

structure and capabilities associated with this type of board can be found in its user's 

manual [3]. The card was previously designed and tested by W. Cowan and D. Conrad. 

However, it was never integrated into a complete system prior to this work. 

The board consists of three main functional components: 1) ISA (Industry 

Standard Architecture) bus transceivers; 2) memory; and 3) control components. A 

functional block diagram of the entire card is shown in Figure 4-9. Communication with 

the board is accomplished through a standard 16-bit device ISA bus cycle; however, it is 

configured to utilize only the least-significant eight data bus bits (D0-D7). The signal 

timings and intricacies of ISA and its 32-bit cousin, Extended ISA (EISA), are well 

documented [42]. 
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Figure 4-9. High-level schematic of PC Control Board 

The ISA bus transceivers continuously update the contents of the memory on the 

PC board with the contents of the segment of PC system memory that stores the 8-bit 

word array downloaded by the software. This occurs in a serial fashion at a rate dictated 

by the bus speed. The primary bus signals utilized in accomplishing the data transfer are 

listed in Figure 4-10. The actual components and transceiver logic used is detailed in the 

board's user manual [3]. 
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A0-A19 

MEMR* 

MEMW* 

D0..D15 

ChRDY 

NOWS* 

M16H 

System Address Bits (used to address memory) 

Memory Read 

Memory Write 

System Data Bits (only D0-D7 are used to transfer memory contents) 

Channel Ready (allows slower ISA boards to lengthen memory cycles by 
inserting wait states) 

Zero Wait State (indicates device is capable of operating without wait states) 

Memory Chip Select 16 (indicates device is capable of 16 bit data transfer) 

Figure 4-10. Listing of primary ISA bus signals 

The memory area of the board is comprised of four (lkB x 8-bit) SRAM (Static 

Random Access Memory) chips connected in parallel through a conventional MASTER- 

SLAVE wiring. This configuration creates the necessary (lkB x 32-bit) memory bank 

needed to store the actual row waveform patterns to be applied to the array. The SRAM 

chips are dual port which implies the chips have two sets of I/O data lines and address 

lines. This allows one set of address lines to be wired to a jumper block for "hardwire" 

testing of specific areas in the memory block. The second set of address lines are 

connected to the control circuitry. The two I/O data lines are split between input and 

output from the array. The input lines receive data from the ISA bus transceivers and the 

output lines are connected to a 34-pin male ribbon cable socket. 

The final, and arguably most significant section of the board, is the control 

circuitry. The foremost component in this section is the 12-bit binary counter chip. This 
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chip, which triggers off of the negative going edge of a separate input clock signal to the 

board, continuously counts from zero to 1096 in binary across its nine least-significant 

output pins (the remaining 2 output pins are not utilized). These counter output signals 

are wired to one of the sets of memory address lines. Thus, when the counter is 

operating, it effectively cycles through the contents of the array, causing a continuous 

stream of 32-bit words to be seen across the output lines. These 32-bit words are 

manifested as a stream of 32 pulse width modulated signals whose voltage varies from 0 

to 5 Volts since the SRAM chips are CMOS based. These signals are amplified and 

applied to the rows of the LAMA device. 

The last five most-significant bits of binary output from the counter chip are also 

wired to a pair of 4 to 16-bit decoder chips. A decoder is a digital circuit device that 

receives binary input from multiple lines and selects a single output line. These decoder 

chips (also CMOS) are wired together in a MASTER-SLAVE wiring to act collectively 

as a 5 to 32-bit decoder. When the counter is operating, the decoder output is an 

individual voltage pulse 32 input clock cycles wide, with a period of 1024 clock cycles, 

applied across each of its 32 output lines. The pulse is then inverted, so the inactive state 

is +5V and the active state is 0V. The 32 output lines are also connected to a separate 34- 

pin ribbon cable connector. They are of course later amplified and applied to the 

columns of the LAMA device, acting as the column select signals described in Section 

4.2. 
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It should become obvious that the counter chip is what keeps the timing of all the 

signals synchronized with the input clock frequency. Since it is edge triggered, the 

period of the counter, -counter , or the time between binary increments, is 

T       =T     +r 14-91 counter pulse separation ' L J 

where Tpuise is the pulse width, and TSeParation is the pulse separation. Thus the frequency 

of the column sweep is equivalent to: 

/,= • {4-10} 
1024-7- 

The remaining two output pins on each of the 34-pin connectors are tied to 

ground. They are used to keep the amplifier board described in the next section, 

referenced to the same voltage as the PC board. Figure 4-11 shows actual sample row 

and column output PWM streams created by the PC board for a given input clock signal. 
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100kHz Pulse Stream Input to PC Board 
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Forward Slash Test Row Output Response to 100kHz Pulsed Input 

!■ (■■>*ll«l 

.-. 4 
(A 

O -3 
> J 

ä  1 
E 

20 

»<M i |iiiimww*l*i«»lj"'»l''ii I ■■" M iwJi II—M»1 

40 60 80 100 120 140 160 180     2Q0 

Time (x10A-6 sec) 

Column Output Response to 100kHz Pulsed Input 

4.5 i 
^     4 - 
s  3.5 
O        o >     3 
0)  2.5 -1 
■°       o 3        2  J 

a 1-5- 
c      1 - 

0.5 
•a 0 - I i 

1                                        ' 
8 12 

Time (x10A-3 sec) 

16 20 

Figure 4-11. Plots oflOOkHz clocked input and corresponding row and column output responses for a 
forward slash test pattern. 
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4.3.3   Pulse Amplification Board 

The two 34-pin output connectors from the control board provide the correct 

timing and modulation of PWM output. However, the peak pulse voltage from the 

controller card is only 5V. The pulse amplification board provides the necessary 

amplification of these signals such that they can be used to achieve significant element 

deflection in the LAMA device. 

The pulse amplification board was designed to maximize flexibility during device 

testing. Because of this flexibility, the amplifier board could potentially be used to test 

alternate control schemes or other electrostatically actuated MEMS devices. At the same 

time, its circuitry was kept simple, with power requirements practical for a laboratory 

setting. It allows the user to adjust the row signals to virtually any desired level, while 

still maintaining the ability to operate for both bi-stable modes, as well as above 

mechanical cutoff. Figure 4-12. shows a photograph of the board with a LAMA device 

mounted in the middle of it. 
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LAMA 
Device 

Figure 4-12. Photograph of Pulse Amplification Board with LAMA device 

The board schematic and layout was designed using Douglas Electronics 

CAD/CAM professional design software on a Macintosh computer platform. Images of 

the final schematic and layout used are included in Appendices C and D respectively. 

The schematic contains the pin number assignments and signal names to the components 

and interconnects of the circuit. Upon completion of the schematic, the CAD/CAM 

software allows for the creation of a netlist file, which is a text file listing all the nodes 

and signal interconnects within the circuit. The next task is to find, and/or create the 

correct pad and thru-hole patterns associated with the actual packages of the components 

chosen for the design. The most important tasks during this step are insuring correct 
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spacings between pads and correct numbering of the pads. The pin numberings on the 

schematic must also be set to correctly refer to those on the package for each device. The 

packages must then be graphically positioned by hand, using the layout software, to form 

the board. Once this is completed, the layout is saved to file and an autorouter program 

maps and creates the interconnects between devices on the layout based on the schematic 

netlist. Often in designs with large numbers of interconnects, such as this one, the 

autorouter must be run a number of times and layout adjustments in component position 

must be made before it completes close to 100% of the required wiring. Once the 

autorouter performance is maximized, the remaining interconnects are connected by 

hand. After visually inspecting/adjusting the layout to maximize the spacing between 

lines created by the autorouter, the design can be submitted to Douglas Electronics for 

fabrication. In the case of this design, fabrication took approximately two weeks. 

The basic amplification circuit used for each channel in this design is a simple 

linear pull-down amplifier. A small-signal n-channel enhancement mode MOSFET 

(metal-oxide-semiconductor field effect transistor), capable of switching voltages up to 

60V, was selected for use as a binary switch in the circuit. This implies the MOSFET is 

either on (closed switch), or off (open switch) based on the voltage applied to its gate. 

For the rows, a series of two 2.5k£2 variable resistors (1/8 W) were used to act as a 

variable voltage divider, allowing the user to adjust the inactive state voltage of the 

output PWM signal. A schematic of this circuit is shown in Figure 4-13. The actual 

output PWM signals for this circuit will have an active state equivalent to Vrow and an 

inactive state determined by the voltage divider equation 
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Vrowout ■ 
Vrow 

R2 {4-11} 
RI + R2 

Since the column signals are fixed, the circuit for these channels uses a single non- 

variable 2kQ resistor (1/8 W) as the pull-down resistor (Rl = 2kQ, R2 = OQ). The 

resistances were chosen to minimize the current drawn from each channel without 

compromising the frequency response of the circuit when coupled to the output 

capacitance of the transistors. Since this circuit acts as a digital inverter, to maintain a 

positive logic system, an inverting high speed MOSFET driver (1.2A) was used to buffer 

the signal from the PC Board and drive the gate capacitance of the MOSFET device, 

insuring a clean reproduction of the signal. 

Vrowout, 

M1 

z'+XVrow 

Figure 4-13. Schematic of "pull-down" amplification circuit used for row channels. 
Ml = small-signal MOSFET, Rl & R2 = variable pull-down resistors 
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With the exception of the potentiometers, the components have power capacities 

higher then anything the amp board can produce, to the extent that the amount of voltage 

the circuit can switch is limited to the current capacity of the power supply. The 

potentiometers are actually slightly underated, due to packaging and cost considerations; 

however, the risk was deemed acceptable. It is important to note that the maximum 

current (and power) is drawn when the entire output signal is set to its inactive state, 

meaning a completely undeflected array draws the most power during bi-stable operation. 

Thus the amount of current being drawn when all the row voltages are set low is the first 

thing the user should check. 

The amplification board has five separate contacts for connection to a power 

supply, once again to maximize flexibility in signal output. These are for the ground 

(GND), substrate (Vsub), active row (Vrow), active column (Vco]), and chip voltages (Vchip). 

For proper operation, the LAMA device should be connected to the board when all the 

signals are disabled. To prevent damaging of the device, a pattern setting all the rows 

low should be first be downloaded to the PC Board (which is accomplished automatically 

when LAMACON is launched). Then the voltage to power the chip, substrate voltage (if 

applicable), column voltage, and finally row voltage should be activated, in that order. 

This prevents the inadvertent application of random or potentially damaging voltages to 

the amplification board as well as the LAMA device. 

On a final note, the PWM signal output from the amplifier is applied directly to 

the LAMA device. While the LAMA devices is almost an entirely capacitive load, any 

resistance it does possess will draw a current from the same supply. This additional 
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current may become especially noticeable if the device is damaged or shorted in any way. 

Thus, it is also prudent to compare power supply currents with and without the LAMA 

device, in the case that an unusually large amount of current is being drawn from the 

supply during operation. 
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V. Experimental Setup and Procedure 

"You got to be careful if you don't know where you are going, because you might 
not get there." 

-Yogi Berra [38] 

5.1 Overview 

This chapter describes the experimental measures taken to characterize the 

LAMA devices and test the control system. Section 5.2 describes the experimental setup 

and Section 5.3 describes the experimental procedure. 

5.2 Experimental Setup 

Before testing of the LAMA devices could begin, individual test die from each of 

the foundry processes were released and packaged, so they could be used for 

experimentation. Section 5.2.1 briefly describes how this was accomplished. Once the 

devices were packaged they were characterized using a microscopic laser interferometer. 

The operation of the interferometer operation is described in Section 5.2.2. Upon the 

completion of the control systems construction, an appropriate experimental test bed was 

established to accurately characterize its performance when connected to the LAMA 

device. Section 5.2.3 details the laboratory setup used to in testing the devices. 

5.2.1    Releasing and Packaging 

Surface micromachined devices are typically shipped from prototype foundries 

with their sacrificial oxide layers intact to protect them during shipping, and to allow the 

designer to experiment with various methods of etching. They are also coated with a 
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layer of photoresist to prevent the formation of oxide on the polysilicon surface during 

shipping. The removal of these layers is collectively termed the "release" process. 

Six SUMMiT test die and three MUMPs™ (run #24) test die were released 

according to the procedure detailed in Appendix F. Packaging of the die first involved 

adhering the die to the chip carrier, which was accomplished into the release process 

before the sacrificial layers are etched. Manipulating the die before etching allows one to 

contact the die surface without damaging the mirror elements. Wire-bonding of the 

package pins to the connection pads on the die completed the packaging process. Figure 

5-1 shows an SEM of a completely released and packaged MUMPs™ LAMA device. 

■"■mi 
r****" 

0^ 
■ i.^.fifsiBÄSiJSlL'JKü1! 

Figure 5-1. SEM Image of MUMPs ™LAMA device mounted and connected on package 
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5.2.2   Microscopic Laser Interferometer 

The testing and evaluation of the LAMA device was accomplished with the Zygo 

Maxim 3D microscopic laser interferometer. This instrument is similar in structure to a 

regular microscope, except it has a built-in HeNe laser (A, = 632 .8 nm) to 

interferometrically measure phase variations. Specifically, the microFizeau™ xl and xlO 

microscope objectives were primarily used to conduct characterization. These 

microscope objectives are similar to ordinary microscope objectives except that they have 

a reference surface which is used to from an interference pattern between the field from 

the reference surface and the field from the test surface [2]. Figure 5-2 shows a ray 

diagram illustrating the optical paths of these two beams within the microFizeau™ 

objective. 
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Reference plate 

Test surface 

Beam reflected off of test surface 

Beam reflected off of reference plate 

Figure 5-2. Ray diagram of microFizeau ™objective, from [2] 

The reference surface is a specially coated quarter-wave plate, that can measure 

test surfaces with reflectivity's as low as 4% (additional optics exist in the interferometer 

to offset the shift in polarization that occurs upon reflection). Thus, the LAMA devices 

that were not coated w/ a reflective metal layer were reflective enough to conduct 

characterization. The fringe spacing is controlled by the tip and tilt of the objective. The 

range of motion allowed is adequate to create the formation of several fringe lines across 

a single micromirror element, as well as across the entire array, at low magnification. 

These fringe lines provide an accurate indicator of curvature and allow the use of the 
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static fringe method described in Section 3.5. Additional information on this 

interferometer can be found in the Maxim-3D user manual [2]. 

5.2.3    Control System Setup 

The control system components were assembled for testing according to the 

schematic shown in Figure 5-3. The amplification board received from Douglas 

Electronics was found to have several layout errors on it. These errors included 

mislabeled signal lines, incorrectly oriented device pads, and incorrect pad spacings. To 

correct the misrouted signal lines a separate breadboard (not shown in Figure 5-3) was 

constructed to provide the correct interface between the PC board and the amplification 

board. The signal lines are physically interfaced using 34-pin ribbon cables. The GUI is 

run on a PC with a 133MHz Pentium CPU. The HP3314A Function Generator is used to 

provide a 3Vp-p, 50% duty cycle square wave to trigger the counter chip on the PC 

Board. The five power connections for the amplification board are supplied by the 

HP6624A System DC Power Supply. Signals from the amplifier and PC Board are 

verified and collected using a Lecroy 7200A Digital Oscilloscope with 7242B dual 

channel input. The amplification board is mounted onto a Styrofoam base to prevent 

accidental shorting between nodes. The LAMA device residing in the center of the 

board, is centered under the microscopic laser interferometer for viewing. Figure 5-4 

shows a photograph of the actual lab setup. 
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Figure 5-4. Schematic of Control System Experimental Setup 

Figure 5-5. Photograph of Control System Experimental Setup 
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5.3   Experimental Procedure 

After packaging the test devices, DC characterization is conducted on each 

sample via the static fringe method. This is accomplished on a separate test interface that 

merely wired rows and columns directly to the DC power supply. Estimated spring 

constants were deduced for various rows, columns, and individual elements across the 

each array. In addition the snap-down and snap-up voltages were empirically determined 

by gradually increasing the applied voltage. The resonant and mechanical cutoff 

frequency of the mirrors was also tested by gradually increasing the frequency of an 

amplified pulse stream created using a test circuit similar to that in Figure 4-13. 

The ultimate focus was to determine the response of the LAMA device under 

each of the three modes of operation described in Chapter 4 through the use of the control 

system constructed. Figure 5-6 lists the experimental settings used in testing each of the 

two bi-stable modes of operation. The multistable ramps were applied for Vrow = 20V at 

a frequency of well above the experimentally determined mechanical cutoff (f = 10MHz). 

Conventional Enhanced 

Vcol 8V 15V 

»row 28V 30V 

Vchip 5V 5V 

VSub 8V ov 

Rl lkQ 2.5 kQ 

R2 2.5 kQ OkQ 

Figure 5-6. Initial Experimental Settings used for bi-stable testing 
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The input voltages were chosen for both bi-stable modes to reduce the number of hold 

states and safely assure the applied differential voltage was greater then the snap-down 

voltage. The resistance levels were set to minimize the current drawn by each channel 

during operation as well as to correctly scale the row pulse for the desired mode. These 

resistances were adjusted by calibrating each potentiometer on the board with a 

multimeter. Observations made under the microscopic laser interferometer were 

recorded onto a video cassette for documentation purposes. 

If we imagine a set of coordinate axis zeroed at element (16,16) the array can be 

divided into four quadrants. The primary test pattern used for testing of the bi-stable 

modes was the "Quadrant II" test pattern, so named because it snaps-down all the 

elements in the second quadrant; as shown in Figure 5-7. This pattern isolates a large 

group of elements for snap-down and allows easy comparison between quadrants I and 

quadrant II and IV which will have different hold states. 
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Figure 5-7. "Quadrant 2" bistable test pattern 
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VI. Test Results and Analysis 

"We didn't lose the game; we just ran out of time." 

-Vince Lombardi [38] 

6.1 Overview 

This chapter details the observations and subsequent analysis made throughout the 

course of experimentation with the LAMA device and its corresponding control system. 

The application of optical far-field and frequency response models for the LAMA are 

also presented, based on the device structure and estimated spring constants. 

6.2 Micromirror Release Yield 

The release process used on the LAMA devices was originally derived from a 

process previously utilized by AFIT students for MUMPs™ die (see [10]). The first of 

the three MUMPs™ die released was deliberately overetched for 3.5 minutes to observe 

the effects of overetching in MUMPs™. The surface on this device was incongruous and 

pitted as expected. Several elements on it were destroyed. The remaining two die, one 

with MUMPs™ metal and one without, were released with the recommended 2.5 minute 

etch time. The sample without metal had 16 faulty mirror elements (98.4% yield) and the 

one with metal had 22 faulty elements (97.8% yield). 

This same process, with a considerably extended etch time, was applied to the 

SUMMiT arrays. However, the results were inconsistent for the six samples. The 

SUMMiT die were released in pairs at different times. The first two die were etched for a 
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total time of 50 minutes in HF and the results were reasonable (-98% yield). The second 

pair of devices when etched for this same time did not appear to completely release. 

Eight minutes of additional etching was required before uniform release was observed 

(-98% yield). It was initially believed after releasing this second set of devices, that an 

accurate etch time had been established for the SUMMiT devices. However, the final 

pair of devices, when etched for 58 minutes, did not appear to release uniformly. An 

additional 5 minutes of etching was accomplished on one of these devices in an attempt 

to complete the release but this resulted in the destruction of mirror elements; the 

supporting hinges were entirely dissolved (see Figure 6-1). The final two devices were 

not packaged or included in further experimentation. Although, at the completion of the 

experiment, it was noticed that the device which wasn't etched for an additional 5 

minutes in this final pair actually appeared to have released when reexamined over a 

month later. This observation suggests that perhaps the problem observed is not in the 

etching, but rather in the evaporation of the methanol at the end of the release process. It 

is suspected that additional drying time may be required for the SUMMiT devices. In 

addition, the number of unreleased elements tends to increase towards the center of the 

array. This observation is explained partially by noting the geometry of the device. The 

elements on the edge of the array have both top and side sacrificial oxide area exposed 

for etching, while the elements on the inside of the array have only the top area exposed. 

If the etch holes in the SUMMiT devices alone don't allow enough ion exchange during 

etching, the elements towards the outside should release more rapidly and completely 

then those on the inside. Since the SUMMiT devices are etched for much longer than the 
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MUMPs™ devices, the fact that the HF solution is stagnate during etching may be 

causing an uneven etch rate across the device. This conclusion is strengthened by noting 

that the first two pairs of test die were physically dipped in and out of the HF solution in 

an effort to establish a proper etch time, which raises the suspicion that the dipping itself 

may have enhanced the effect of the etch, resulting in successful release. A potential 

solution to this problem is to introduce slight agitation while etching in order to insure a 

constant ion exchange is occuring. 

Figure 6-1. Image of poorly released SUMMiT LAMA device. 

The details of this release process may at first appear inconsequential to the 

control of the LAMA device, especially with such high yields, however this is not the 

case. In fact, this step is potentially the most critical to master if line-addressing is to be 

realized in micromirror arrays. While 97-98% yield is acceptable for researching 

individually addressed arrays, it is potentially devastating to a line-addressable array of 

this design, since the top plates of all the mirror elements are tied together by rows. If an 
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element's top plate breaks off, not only is that element destroyed but control is lost for 

the remaining elements in that row. In addition, if other defects occur such as a shorting 

of a top plate to a bottom plate, control of both the column and row is affected. The full 

ramifications of this will become apparent when the operation of the control system is 

discussed in Section 6.5. 

6.3   Micromirror Characterization 

To begin device characterization, static fringe voltages were measured for the 

rows, columns, and individual elements of the three SUMMiT and two MUMPs™ 

samples; using the technique described in Section 3.5. The voltage values listed in Figure 

6-2 were generated by applying positive voltages to the rows and negative voltages to the 

columns with the substrate held at ground. Results are consistent between samples, 

however varied across the micromirror array for the MUMPs™ devices. In the 

MUMPs™ devices, the static fringe voltage increases for rows/columns farther from the 

center of the array. This effect is being attributed to uneven etching across the array. 

The column static fringe voltages were consistently larger then the row voltages for all 

devices tested. While the overlapping plate area remains unchanged between 

measurements, the top plates (row plates) are larger and partially overlap the substrate. 

There is an additional force produced by this overlap and the effective spring constant is 

substantially less. The individual element measurements are actually dependent on the 

amount of row to substrate differential voltage, in addition to the differential voltage 

between plates. Thus for the individual elements the estimated spring constant actually 
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varied slightly depending on how the differential voltage was created across the element. 

As the ratio of the positive voltage on the row with respect to the negative voltage on the 

column increased, the static fringe voltage decreased. The value listed in Figure 6.2 is an 

average value of measurements taken when these voltages are approximately equal in 

magnitude. 

SUMMiT MUMPs™ 
w/o metal 

Row 24V 18-21V 

Column 26.5V 21-28V 

Element ~26V 21-27 V 

Figure 6-2. DC Static Fringe Voltage measurements taken for SUMMiT and MUMPs ™LAMA Devices. 
The SUMMiT static fringe voltage for individual elements was averaged for various applied DC 

row/column voltages with the substrate grounded. 

The static fringe voltage for the MUMPs™ device with metal is not listed because 

snap-down occurred (at ~14V) before the measurement could be taken. The measured 

snap down voltages for the remaining devices were all just above the static fringe voltage 

and are listed in Figure 6-3. The snap-up voltages are not listed because it was found that 

the snap-up values are strongly dependent on how hard the element is initially snapped 

down. For SUMMiT elements that are snapped down at voltages just above the listed 

snap-down voltage, the snap-up voltage is roughly ~9V. The MUMPs™ elements tested 

under the same conditions didn't snap-up until the voltage was very close to ground. 

Several elements didn't recover at all though when snapped down even under these 

conditions. These elements remained permanently snapped down. At voltages well 

above the snap-down voltage this permanent snap down always occurred. More 
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importantly, these snapped down elements were not at a fixed position. This effect is due 

to a design flaw in the LAMA device. To prevent stiction from occurring during the 

release process, dimples were placed under the two corners where the flexure beams join 

the top mirror plate. When an element is snapped down, these dimples make contact with 

the substrate, and support the top plate at these two corners. Since the distance between 

plates is much closer at snap down (-0.95 |im for MUMPs™, and -0.25 |im for 

SUMMiT] and any slight instability can cause the top plate to diagonally pivot on these 

two dimples. The top plate can therefore hold three equilibrium positions at snap-down; 

two tilt positions and a position where it remains balanced on the two dimples. Each of 

these three possible states is shown in Figure 6-4. It was also noted that if an element 

was held at a voltage near the snap down voltage for a significant amount of time (5-15 

sec) the element would eventually snap-down towards the substrate. This "long term 

snap-down" is attributed to capacitive charge build-up occurring between the plates of the 

element, which is biased in a fixed direction. One way to eliminate this effect is to 

switch the polarity of voltages applied to the element, thus maintaing the same 

differential voltage while the built-up charge drains. Countering this effect was not 

deemed critical to the demonstration attempted in this work, which is why it was not built 

into the control electronics. It is, however, important in the control of future micromirror 

arrays in which a fixed pattern needs to be held for a long period of time. 
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SUMMiT 
MUMPs™ 
w/o metal 

Row 25V 20-24V 

Column 27V 24-3IV 

Element -26.5V 24-28V 

Figure 6-3. DC Snap-down Voltage measurements taken for SUMMiT and MUMPs ™LAMA Devices. 
The SUMMiT static fringe voltage for individual elements was averaged for various applied DC 

row/column voltages with the substrate grounded. 

a) 
\rr 

b) 

c) 

Figure 6-4. Images captured under the microscopic laser interferometer indicating three potential snap- 
down states of the LAMA element 

The rotation of fringe lines indicates additional tilt induced by the element; a) and b) show tilting to the 
opposite corners, while c) shows some intermediate state. 
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Operation of the mirror elements above the mechanical cutoff correlated directly 

with predicted theory. The static fringe rms voltages collected were the same as the static 

fringe voltages collected under DC conditions. The degree of frequency above the 

mechanical cutoff did not appear to make a difference in operation. 

Surface profiles of the entire array were also viewed under the microscopic laser 

interferometer. While actual differential heights could not be measured due to lack of an 

adequate reference plane, the bending of fringe lines is observed across the SUMMiT 

arrays as shown by Figure 6-5. The fringe bending indicates a slight curvature profile 

across the entire array. The MUMPs™ arrays also exhibited this property. Curvature was 

also observed on individual elements for both the SUMMiT and MUMPs™ devices. 

Figure 6-5 shows a positive curvature profile with -30 nm center-to-edge difference 

across an individual SUMMiT element. This figure also shows the difference in 

actuation observed between rows and columns for a given DC voltage. 
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Figure 6-5. Image ofSUMMiT LAMA device under microscopic laser interferometer indicating 
curvature across the array 

Figure 6-6. Height profile of individual SUMMiT LAMA element with +20V applied to its 
corresponding row and column 

The contour profile shown is not to absolute scale with respect to the substrate, however it does provide 
an accurate indication of relative position between elements and across an individual element. The scale 
shown is in units ofnm. The difference between column and row deflection for a given voltage is easily 

seen as well as the curvature profile across the element surface. 
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6.4   Micromirror Response Modeling 

The models discussed in Chapter 3 were implemented and results were generated 

using an individual SUMMiT element as an example. The intention of this exercise was 

to demonstrate the extent to which device response can be estimated through the use of 

simple models. The static DC voltage response model was generated using MATLAB" 

(see Appendix G). This same code was extended to present the analysis in Section 4.2.3. 

The estimated spring constant was found to be 22.6 N/m and the resulting projected 

deflection curve is shown in Figure 6-7. 

Plot of Estimated Deflection vs. Voltage for SUMMiT LAMA element 
700 

15 
Voltage (V) 

Figure 6-7. Estimated Deflection Response Curve for individual element on SUMMiT device. 
Curve was generated from a static fringe voltage of 26 Volts. 
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The corresponding estimated resonant frequency, from Equation {3-8}, is 81kHz. The 

exact actual resonant frequency and cutoff frequency are difficult to discern under the 

microscopic laser interferometer, however they are estimated to be roughly 100kHz and 

150kHz respectively. This discrepancy between estimations is difficult to explain, since 

neither estimation is known to be the correct value. Figure 6-8 shows a Bode diagram 

indicating the mechanical frequency response of a SUMMiT element, based on the mass- 

spring system presented in Section 3.3.3. 

Bode Diagram 

Frequency (rad/sec) 

Figure 6-8. Bode Diagram indicating mechanical frequency response of an individual SUMMiT 
element. 

Based on mass-spring system model (k=22.6 N/m, B=0) 

The electrical model presented in Section 3.3.3 was generated using B SPICE, 

from Beige Bag Software. The component values were estimated using the known 
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material parameters and the design dimensions of each circuit element. Figure 6-9 shows 

that the theoretical response exhibits very little attenuation up until the GHz range. 

Small Signal AC sweep of SUMMIT micromirror SPICE model 

+100.000k       +1.000Meg     +10.000Meg   +100.000Meg       +1.000g 
0 

-20 

-40 

-60 

-80 

-100 

-120 

-140 

-160 

Frequency (Hz) 

-Amplitude (Decibels) 

- Phase (Deg) 

Figure 6-9. Frequency response generated from the individual micromirror (SUMMiT) SPICE model. 

>® . An optical model of the reflected far-field was also created in MATLAB   for the 

LAMA device holding an arbitrary bi-stable pattern (see Appendix H). This code takes 

full advantage of MATLAB® s matrix manipulation capabilities, and is subsequently 

much more efficient compared to previously implemented models [37]. Slight curvature 

profiles were included in the model to match the observations made during device 

characterization. Figure 6-10 shows the ideal bi-stable "checkerboard" pattern used to 

test the optical model (each black/white square = 1 element). Figure 6-11 shows the 

corresponding theoretical far-field response for a plane-wave reflected off of this pattern. 
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Figure 6-10. Pseudo-image of checkerboard phase map used for optical far-field modeling. 
The black elements represent the phase accrual associated with snap down, while the white elements are 

undeflected. The xy axis are scaled in units of pixels. 
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Figure 6-11. Theoretical far-field intensity distribution for a monochromatic plane wave reflected off of 
an ideal bi-stable"checkerboard" pattern 

The xy axis are scaled for a distance ofl meter from the array and for a wavelength of 632.8 nm. 
Image a) shows the far-field pattern b) shows a close-up around the central order. The distribution 
around the central order indicates the spatial frequency components inherent in the checkerboard 

aperture profile. 

101 



6.5   System Performance 

Before bi-stable control of the LAMA device was attempted the control system 

was first tested separately to insure it functioned properly. Several mistakes were found 

in the routing of signals, the majority of which trace back to errors made during the PC 

Board design process. All the known errors were remedied and the entire system was 

proved functional. This testing was accomplished by observing the arbitrary row and 

column signals for proper amplitude and phase overlap using a digital oscilliscope. 

Figure 6-12. shows the overlapping of pulse segments indicating actuation of element 

(21,4) for the conventional mode of operation. 

Segments of amplified PWM signals seen by LAMA device element (21,4) for a 
bi-stable test pattern 

(Operating frequency = 5kHz) 

*# 

iw*iti>iHi| 

-Row 21 Output 

-Column 4 Output 

0       5       10      15     20     25     30     35     40     45     50     55     60     65      70     75      80     85     90     95     100 

Time (ms) 

Figure 6-12. Actual row and column signals generated by the control system for operation in the 
conventional bi-stable mode. 

Overlapping of signals indicates that element(21,4) is being directed to the snap-down position. 

Testing of the bi-stable modes was predominantly unsuccessful. The first 

conventional mode did not appear to induce snap-down in any of the elements for the 
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voltages applied. The second method showed a bit more promise. The intended elements 

did exhibit some motion at the correct time; however they failed to achieve snap-down. 

The substrate voltage was later changed to that of the columns in the second scenario to 

better stabilize the array. This helped discern individual deflections in the array, however 

the elements still did not snap down appropriately. Operation above cutoff was 

attempted; however, too many defects existed in the arrays to have an even remotely 

consistent profile across the array. In fact, the problem of imperfect yield is largely 

responsible for inhibiting the device operation. The number of defects (both shorts and 

broken elements) is too large to give an accurate appraisal on the validity of the control 

theory. As a test of how many rows can be successfully actuated at once, simple grating 

patterns were tested on the array. The application of these pattern revealed that while 

many rows responded correctly, several of them were not even getting the signal. This 

effect was observed for all the devices. 

The application of the "Quadrant II" bi-stable test pattern, shown in Figure 5-7, 

using the enhanced bi-stable mode of operation (with Vsub = Vch = 15V and Vrh =30V) 

showed the most promising results. While a bi-stable pattern was not obtained under 

these conditions, the greatest actuation of elements was observed in the second quadrant. 

The timing of the control signals was also verified visually for this pattern with the 

operating frequency slowed down significantly (1 kHz). When the column scan was seen 

to reach the 17th column, actuation of the first 16 rows stopped as anticipated. An 

especially important observation made during the application of this pattern, was that the 

elements in quadrant I also deflected, to a lesser degree, when the elements in quadrant II 
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deflected. According to the theory in Chapter 4, the elements in quadrant I, should 

remain undeflected like those in quadrants III and IV. The reason for this discrepancy is 

that the theory in Chapter 4 assumes equal deflection responses for the rows and 

columns. Characterization of the deflection response however revealed that this was not 

the case, due the fact that the plate areas of the top and bottom plates in the LAMA 

devices were different. This difference in row and column response has a significant 

effect on bi-stable control. 

While the defects in the array represent a huge hurdle in device operation, the 

conditions applied to the array should have at least produced a few snapped down 

elements. This leads to the conclusion that the snap-down voltage under operating 

conditions may be significantly different then that measured under DC conditions. Since 

the snap-down phenomenon is non-linear and not well understood, it is difficult to 

determine how or why this is occurring. Higher voltage levels were tried (up to Vrh = 

32V, Vch = 17V for the enhanced mode) however, the effect was not changed. 
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VII. Conclusions and Recommendations 

"Each problem that I solved became a rule which served to solve other problems." 

-Rene Descartes (1596-1650), "Discours de la Methode" [38] 

While bi-stable pattern control was not achieved for this thesis, much was still 

learned about realizing line-addressing in MEMS micromirror arrays. The 

characterization accomplished using the microscopic laser interferometer proved to be a 

very simple method in generating static DC deflection response profiles for the LAMA 

devices. This information is useful for LAMA device operation above the mechanical 

cutoff. The inability to demonstrate individual bi-stable element control suggests though 

that the electromechanical bi-stability properties of the device measured under DC 

conditions may not be accurate for time-varying signals below the mechanical cutoff. 

Since similar bi-stable control has been demonstrated in the past on tilt arrays, the 

evidence suggests that perhaps the piston-actuated structure may be partially responsible 

for this deviation from the line-addressable theory. Operation above cutoff also remains 

a viable option and could potentially hold some use. However, the main conclusion to be 

drawn from this work is that line-addressable control, in all modes of operation, remains 

highly dependent upon near perfect fabrication and release yield. While the concept still 

remains a possibility in phase modulating micromirror arrays, better released devices 

LAMA devices are necessary to accurately determine if bi-stable line-addressing can be 

realized. Thus optimizing the SUMMiT release process is critical to the success in any 

future work. 
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The successful implementation of the control system used to test the LAMA 

shows that the control of large micromirror arrays, such as the 32x32, is a feasible task if 

line-addressing is used. Several areas of optimization exist if a more practical control 

system is ever to be realized. The most immediate of these would be the integration of 

the PC controller board with the amplifier board. One method worthy of investigation 

would be the use of high voltage CMOS combinational logic devices that would make the 

PC Board circuitry robust enough such that an amplifier isn't required. Another potential 

method would be to eliminate the PC Board and have the software create the PWM 

signals directly through field-programmable gate arrays (FPGAs) which would then be 

amplified. A third approach would be to follow Rounsavall's lead and replace the PC 

Board with a VLSI chip. While these areas will be of eventual interest, the immediate 

research emphasis should be placed on the optimization of the LAMA device. 

Since the control system itself was found to be fully functional for operation, the 

same system should be used on a tilt array design to first reaffirm the findings originally 

made by Cunningham et al. In addition a smaller unflawed version of the piston actuated 

array should be designed and fabricated for future testing. The smaller size will allow 

more flexibility during testing and less grief in assessing any undiscovered difficulties 

with the control system. 

The redesigned piston actuated LAMA device should include features that will 

increase the performance and operational yield of the device. The first recommended 

change is to include dimples at all four corners of the top plate to support the top plate 

upon snap-down. This will eliminate much of the shorting and permanant snap-down 
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associated with the LAMA device. The second major feature that should be incorporated 

are having additional sheet contacts under the flexures of the elements. This will allow 

the area under the flexure beams to be set to the row voltage, which will prevent any 

spurious electrostatic attraction between the top plate and the substrate. One of the main 

drawbacks to line-addressable control with the LAMA is that the destruction of a single 

element's top mirror plate implies the disconnection of all the subsequent elements in that 

row. The final suggestion for redesign would be to eleiminate this problem by including 

an additional pair of bus lines for each row, which wuld connect at the flexure vias. 

Figure 7-1 shows a proposed schematic for a redesigned LAMA element, which includes 

these modifications. 

Flexure 
plane 

Row 
Bus 

Extra dimple 

Extra dimple 

Row 
Bus 

Flexure 
plane 

Figure 7-1. Proposed LAMA element redesign 
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Efforts at optimizing the control system components and redesigning the LAMA 

device would directly carry over the work presented in this thesis; however, there are 

also several additional areas that should be explored that would help further line- 

addressing and micromirror design. One of these is establishing better models for the 

dynamic response of the micromirror array. This effort includes ascertaining a better 

understanding of the snap-down instability. Another is devising an alternative mirror 

device which utilizes additional hold states to achieve some form of multi-stable control. 

Designs that make a compromise between control lines and individual elements stability 

should also be given consideration. 
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APPENDIX A - LAMACON VISUAL BASIC CODE 

The ensuing code was written and compiled in Microsoft Visual Basic 5. This 

code was used to create the Graphical User Interface (GUI) component of the Line- 

Addressable Micromirror Control (LAMACON) software used in testing the LAMA 

device. The project file was defined in ProjectLAMA.vbp and was used to create a 

Standard EXE file ProjectLAMA.exe. The project consisted of two main form files 

frmlAMACON.frm, which defined the physical control layout, and frmSplash.frm, which 

provided a splash screen with version information. In addition, the project included a 

separate module file modLAMAfunctions, bas, which contained all the subroutines to 

handle file I/O and calling of the various MS-DOS executable files which handled the 

physical memory manipulation. 

The Microsoft Developers Network (MSDN) help files and Overland's book 

Visual Basic 6 in Plain English [33] were used heavily as references for proper syntax 

throughout code development. 

The following is the complete contents of frmSplash.frm: 

VERSION 5.00 
Begin VB.Form frmSplash 

BorderStyle = 3  'Fixed Dialog 
ClientHeight = 5970 
ClientLeft = 255 
ClientTop = 1410 
ClientWidth = 7995 
ClipControls = 0   'False 
ControlBox = 0   'False 
Icon = "frmSplash.frx":0000 
KeyPreview = -1  'True 
LinkTopic = "Form2" 
MaxButton = 0   'False 
MinButton = 0   'False 
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ScaleHeight 
ScaleWidth 
ShowInTaskbar 
StartUpPosition 

5970 
7995 
0   'False 
2  'CenterScreen 

Sans Serif" 

'False 
'False 
'False 

'Center 
frmSplash.frx" 

Begin VB.Frame frameSplash 
Height =   5715 
Left =   120 
Tablndex       =  0 
Top =  120 
Width =   7785 
Begin VB.Label Label4 

Alignment      =  2  'Center 
Caption        =   "Released 12 
BeginProperty Font 

Name =   "MS 
Size =  12 
Charset        =  0 
Weight =  400 
Underline      =  0 
Italic =  0 
Strikethrough  =  0 

EndProperty 
Height =  255 
Left =  3480 
Tablndex       =  8 
Top =   4320 
Width =   3495 

End 
Begin VB.Label Label3 

Alignment      =  2 
Caption        =   $' 
BeginProperty Font 

Name =   "MS Sans Serif" 
Size =   9.75 
Charset        =  0 
Weight =  400 
Underline      =  0   'False 
Italic =  -1  'True 
Strikethrough  =  0   'False 

EndProperty 
Height =  855 
Left =   120 
Tablndex       =   7 
Top =   4800 
Width =   7215 
Wordwrap       =  -1  'True 

End 
Begin VB.Label Labell 

Alignment 
Caption 
BeginProperty Font 

Name =   "MS 
Size =   12 
Charset        =  0 
Weight =   400 
Underline      =  0 
Italic =  0 
Strikethrough  =  0 

EndProperty 
Height =   255 

November 2000" 

:000C 

2  'Center 
"Air Force Institute of Technology" 

Sans Serif" 

'False 
'False 
'False 
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Left =   3480 
Tablndex       =  6 
Top =   3960 
Width =   3495 

End 
Begin VB.Line Line3 

XI =   3480 
X2 =   7200 
Yl =   3480 
Y2 =   3480 

End 
Begin VB.Image Imagel 

Height =  915 
Left =  3480 
Picture        =   "frmSplash.frx":00CC 
Stretch        =  -1  'True 
Top =   3 60 
Width =   3765 

End 
Begin VB.Label lblAuthor 

Alignment      =   2  'Center 
Caption        =   "Created by 2d Lt Harris J. Hall USAF" 
BeginProperty Font 

Name =   "MS Sans Serif" 
Size =   12 
Charset        =  0 
Weight =  400 
Underline      =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  375 
Left =  3240 
Tablndex       =  5 
Top =   3600 
Width =   4215 
Wordwrap       =  -1  'True 

End 
Begin VB.Label lblVersion 

Alignment      =  2  'Center 
Caption        =   "Version 1.1" 
BeginProperty Font 

Name =   "Impact" 
Size =  12 
Charset        =  0 
Weight =  400 
Underline      =  0   'False 
Italic =   0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  255 
Left =   3600 
Tablndex       =  4 
Top =  3120 
Width =   3495 

End 
Begin VB.Line Line2 

XI =   3480 
X2 =   7200 
Yl =   3000 
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'False 
'False 
'False 

Y2 =  3000 
End 
Begin VB.Line Linel 

XI =   2880 
X2 =   2880 
Yl =   360 
Y2 =   4560 

End 
Begin VB.Label lblTitle 

Alignment      =  2  'Center 
Caption =    "Line 

Environment " 
BeginProperty Font 

Name =   "Impact" 
Size =   14.25 
Charset        =  0 
Weight =  400 
Underline      =  0 
Italic =  0 
Strikethrough  =  0 

EndProperty 
Height =   73 5 
Left =   3240 
Tablndex       =  3 
Top =   2160 
Width =   4335 
Wordwrap       =  -1  'True 

End 
Begin VB.Label Label2 

Alignment      = 
Caption        = 
BeginProperty Font 

Name =   "MS Sans 
Size =   8.25 
Charset        =  0 
Weight =   700 
Underline 
Italic 
Strikethrough 

EndProperty 
Height 
Left 
Tablndex       = 
Top 
Width 

End 
Begin VB.Label lblLAMACON 

Alignment      = 
Caption        = 
BeginProperty Font 

Name 
Size 
Charset 
Weight 
Underline      =  0   'False 
Italic =  0   'False 
Strikethrough  =  0   'False 

EndProperty 
Height =  615 
Left =   3240 

Addressable Micromirror Array Control 

2  'Center 
"Charlie the Llama" 

Serif 

'False 
'False 
'False 

0 
0 
0 

255 
120 
2 
4560 
2295 

2  'Center 
"LAMACON" 

"Times New Roman" 
24 
0 
400 
0 
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Tablndex = 1 
Top = 1440 
Width = 4335 

End 
Begin VB.Image imgCharlie 

Height = 4155 
Left = 120 
Picture = "frmSplash.frx":1AE0 
Top = 360 
Width = 2340 

End 
End 

End 
Attribute VB_Name = ' frmSpla sh" 
Attribute VB_GlobalNameSpace = False 
Attribute VB_Creatabl e = Fal se 
Attribute VB_PredeclaredId = True 
Attribute VB_Exposed = False 

Option Explicit 

Private Sub Form_KeyPress(KeyAscii As Integer) 
frmLAMACON.Show 
Unload Me 

End Sub 

Private Sub frameSplash_Click() 
frmLAMACON.Show 
Unload Me 

End Sub 

Private Sub lblTitle_Click() 
frmLAMACON.Show 
Unload Me 

End Sub 

The following is primary form manipulation code contained mfrmLAMACON.frm: 

PLEASE NOTE: Only the section of code in frmLAMACON.frm that handles actual 

manipulation of controls and event procedures has been included. The code generated by 

the VB programming environment that determines control position and asthetics has been 

left out to conserve space. That section of code looks very similar to that found in 

frmSplash.frm except it's over 1000 times longer. Although the form layout is 

fundamental to the GUI design, the code defining it is not necessary in understanding the 

operation of the form. 
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frmLAMACON Load Initialization 
for ProjectLAMA.vbp 
by Harris Hall 

- NOTE: ProjectLAMA.exe should reside in C:\LAMA with additional *.exe 
files it calls 

Private Sub Form_Load() 

I   I   I   I   I   I I   I   I   I   t 

'initialize variables 
Dim i As Integer, j As Integer 'increment variables 

'initialize control panel 

'initialize array pattern 
For i = 0 To 31 

cmdRowl 
cmdRowl 
cmdRowl 
cmdRowl 

cmdRow2 
cmdRow2 
cmdRow2 
cmdRow2 

cmdRow3 
cmdRow3 
cmdRow3 
cmdRow3 

cmdRow4 
cmdRow4 
cmdRow4 
cmdRow4 

cmdRow5 
cmdRow5 
cmdRow5 
cmdRow5 

cmdRow6 
cmdRow6 
cmdRow6 
cmdRow6 

cmdRow7 
cmdRow7 
cmdRow7 
cmdRow7 

cmdRow8 
cmdRow8 
cmdRow8 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(1, 

.Tag = 0 
& i + 1 & ") " 

.Caption = "0" 

.Enabled = False 

.ToolTipText = " (2," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(3," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(4, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(5, 

.Tag = 0 

& i + 1 & ") " 

& i + 1 & ") " 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(6," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(7, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(8, 

& i + 1 & 

& i + 1 & 
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cmdRow8(i).Tag = 0 

cmdRow9(i).Caption = "0" 
cmdRow9(i).Enabled = False 
cmdRow9{i).ToolTipText = "(9," & i + 1 & 
cmdRow9(i).Tag = 0 

cmdRowl0 
cmdRowl0 
cmdRowl0 
cmdRowl0 

cmdRowl1 
cmdRowl1 
cmdRowl1 
cmdRowl1 

cmdRowl2 
cmdRowl2 
cmdRowl2 
cmdRowl2 

cmdRowl3 
cmdRowl3 
cmdRowl3 
cmdRowl3 

cmdRowl4 
cmdRowl4 
cmdRowl4 
cmdRowl4 

cmdRowl5 
cmdRowl5 
cmdRowl5 
cmdRowl5 

cmdRowl6 
cmdRowl6 
cmdRowl6 
cmdRowl6 

cmdRowl7 
cmdRowl7 
cmdRowl7 
cmdRowl7 

cmdRowl8 
cmdRowl8 
cmdRowl8 
cmdRowl8 

cmdRowl9 
cmdRowl9 
cmdRowl9 
cmdRowl9 

cmdRow2 0 
cmdRow2 0 
cmdRow2 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(10," & 

.Tag = 0 
i + 1 & 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(11, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(13, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(14, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(15, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(16, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(17, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(IE 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(19, 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(20, 

& i + 1 & ") " 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(12," & 

.Tag = 0 
i + 1 & 

& i + 1 & ") 

& i + 1 & 

& i + 1 & 

& i + 1 & ") " 

& i + 1 & ") 

" & i + 1 & 

& i + 1 & ") " 

& i + 1 & 
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cmdRow2 0(i).Tag = 0 

cmdRow21 
cmdRow21 
cmdRow21 
cmdRow21 

cmdRow22 
cmdRow2 2 
cmdRow22 
cmdRow22 

cmdRow2 3 
cmdRow2 3 
cmdRow2 3 
cmdRow2 3 

cmdRow2 4 
cmdRow24 
cmdRow2 4 
cmdRow2 4 

cmdRow2 5 
cmdRow2 5 
cmdRow2 5 
cmdRow2 5 

cmdRow2 6 
cmdRow2 6 
cmdRow2 6 
cmdRow2 6 

cmdRow2 7 
cmdRow2 7 
cmdRow2 7 
cmdRow27 

cmdRow2 8 
cmdRow2 8 
cmdRow2 8 
cmdRow2 8 

cmdRow2 9 
cmdRow2 9 
cmdRow2 9 
cmdRow2 9 

cmdRow3 0 
cmdRow3 0 
cmdRow3 0 
cmdRow3 0 

cmdRow31 
cmdRow31 
cmdRow31 
cmdRow31 

cmdRow32 
cmdRow3 2 
cmdRow3 2 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(21," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(22," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(23," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(24," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(25," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(26," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(27," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(28," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(29," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(30," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(31," & i + 1 & ")" 

.Tag = 0 

.Caption = "0" 

.Enabled = False 

.ToolTipText = "(32," & i + 1 & ")" 

116 



cmdRow32(i).Tag = 0 

Next i 

'Default to Set Rows Low 
'initialize storage array to zero ("Up" Position across array) 
optMode(O).Value = True 
lblProgress.Caption = "Welcome to LAMACON!" 

End Sub 
Private Sub cmdExit_Click() 

End 
End Sub 

Private Sub mnuLoad_Click() 

Dim openFileName As String 

'Only reads bi-stable pattern files saved with *.pat extension 
CommonDialogl.Filter = "Binary Pattern Files (*.pat)|*.pat" 
CommonDialogl.ShowOpen 

openFileName = CommonDialogl.FileName 'obtains path and name info 

readPatternFile openFileName 'reads in pattern file 

updateConArray 'updates control array 

lblProgress.Caption = "File loaded:" & openFileName 

End Sub 

Private Sub mnuSavePattern_Click() 

Dim saveFileName As String 

'Bi-stable Pattern Files are saved with *.pat extension 
CommonDialogl.Filter = "Binary Pattern Files (*.pat)|*.pat" 
CommonDialogl.ShowSave 

saveFileName = CommonDialogl.FileName 'obtains path and name info 

createPatternFile saveFileName 

lblProgress.Caption = "File saved as: " & saveFileName 

End Sub 

Private Sub mnuViewSplash_Click() 
frmSplash.Show 

End Sub 

Private Sub optMode_Click(Index As Integer) 

Dim i As Integer 

If optMode(O).Value = True Then 
disableConArray 
lowSetArray  'sets mirrorarray to 0 and calls lowSet.exe 
updateConArray 
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cmdUpdate.Enabled = False 
lblProgress.Caption = "Writing OOh to Memory (CF000..CFFFF)" 

Elself optMode(l).Value = True Then 
disableConArray 
highSetArray  'sets mirrorarray to 1 and calls highSet.exe 
updateConArray 
cmdUpdate.Enabled = False 
lblProgress.Caption = "Writing FFh to Memory (CF000..CFFFF)" 

Elself optMode(2).Value = True Then 
disableConArray 
multiConArray 
testSlash     'calls testSlash.exe 
cmdUpdate.Enabled = False 
lblProgress.Caption = "Writing Forward Test Slash Signal Pattern to 

Memory (CF000..CFFFF)" 

Elself optMode(3).Value = True Then 
disableConArray 
multiConArray 
upTiltArray 'calls upTilt.exe 
cmdUpdate.Enabled = False 
lblProgress.Caption = "Upwards Voltage Ramp Loaded - Operate ABOVE 

cutoff frequency" 

Elself optMode(4).Value = True Then 
disableConArray 
multiConArray 
downTiltArray       'calls downTilt.exe 
cmdUpdate.Enabled = False 
lblProgress.Caption = "Downwards Voltage Ramp Loaded - Operate ABOVE 

cutoff frequency" 

Elself optMode(5).Value = True Then 
enableConArray 
lowSetArray    'sets micromirror array to 0 and calls lowSet.exe 
updateConArray 
cmdUpdate.Enabled = True 
lblProgress.Caption = "Bistable Control Enabled - Operate BELOW cutoff 

frequency" 

End If 

End Sub 

Private Sub cmdUpdate_Click() 

createLiasonFile 'converts and creates liason text file 
memSetArray  ' calls program to interpret liason text file 

and download pattern to physical memory 

End Sub 

Private Sub cmdRowl_Click(Index As Integer) 

If cmdRowl(Index).Tag = 0 Then 
cmdRowl(Index).Tag = 1 
cmdRowl(Index).Caption = 1 
mirrorArray(0, Index) = 1 
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Else 
cmdRowl(Index).Tag = 0 
cmdRowl(Index).Caption = 0 
mirrorArray(0, Index) = 0 

End If 

End Sub 
Private Sub cmdRow2_Click(Index As Integer) 

If cmdRow2(Index).Tag = 0 Then 
cmdRow2(Index).Tag = 1 
cmdRow2(Index).Caption = 1 
mirrorArray(1, Index) = 1 

Else 
cmdRow2(Index).Tag = 0 
cmdRow2(Index).Caption = 0 
mirrorArray(1, Index) = 0 

End If 

End Sub 
Private Sub cmdRow3_Click(Index As Integer) 

If cmdRow3(Index).Tag = 0 Then 
cmdRow3(Index).Tag = 1 
cmdRow3(Index).Caption = 1 
mirrorArray(2, Index) = 1 

Else 
cmdRow3(Index).Tag = 0 
cmdRow3(Index).Caption = 0 
mirrorArray(2, Index) = 0 

End If 

End Sub 
Private Sub cmdRow4_Click(Index As Integer) 

If cmdRow4(Index).Tag = 0 Then 
cmdRow4(Index).Tag = 1 
cmdRow4(Index).Caption = 1 
mirrorArray(3, Index) = 1 

Else 
cmdRow4(Index).Tag = 0 
cmdRow4(Index).Caption = 0 
mirrorArray(3, Index) = 0 

End If 

End Sub 
Private Sub cmdRow5_Click(Index As Integer) 

If cmdRow5(Index).Tag = 0 Then 
cmdRow5(Index).Tag = 1 
cmdRow5(Index).Caption = 1 
mirrorArray(4, Index) = 1 

Else 
cmdRow5(Index).Tag = 0 
cmdRow5(Index).Caption = 0 
mirrorArray(4, Index) = 0 

End If 

End Sub 
Private Sub cmdRow6_Click(Index As Integer) 
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If cmdRow6(Index).Tag = 0 Then 
cmdRow6(Index).Tag = 1 
cmdRow6(Index).Caption = 1 
mirrorArray(5, Index) = 1 

Else 
cmdRow6(Index).Tag = 0 
cmdRow6(Index).Caption = 0 
mirrorArray(5, Index) = 0 

End If 

End Sub 
Private Sub cmdRow7_Click(Index As Integer) 

If cmdRow7(Index).Tag = 0 Then 
cmdRow7(Index).Tag = 1 
cmdRow7(Index).Caption = 1 
mirrorArray(6, Index) = 1 

Else 
cmdRow7(Index).Tag = 0 
cmdRow7(Index).Caption = 0 
mirrorArray(6, Index) = 0 

End If 

End Sub 
Private Sub cmdRow8_Click(Index As Integer) 

If cmdRow8(Index).Tag = 0 Then 
cmdRow8(Index).Tag = 1 
cmdRow8(Index).Caption = 1 
mirrorArray(7, Index) = 1 

Else 
cmdRow8(Index).Tag = 0 
cmdRow8(Index).Caption = 0 
mirrorArray(7, Index) = 0 

End If 

End Sub 
Private Sub cmdRow9_Click(Index As Integer) 

If cmdRow9(Index).Tag = 0 Then 
cmdRow9(Index).Tag = 1 
cmdRow9(Index).Caption = 1 
mirrorArray(8, Index) = 1 

Else 
cmdRow9(Index).Tag = 0 
cmdRow9(Index).Caption = 0 
mirrorArray(8, Index) = 0 

End If 

End Sub 
Private Sub cmdRowlO_Click(Index As Integer) 

If cmdRowlO(Index).Tag = 0 Then 
cmdRowlO(Index).Tag = 1 
cmdRowlO(Index).Caption = 1 
mirrorArray(9, Index) = 1 

Else 
cmdRowlO(Index).Tag = 0 
cmdRowlO(Index).Caption = 0 
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mirrorArray(9, Index) = 0 
End If 

End Sub 
Private Sub cmdRowll_Click(Index As Integer) 

If cmdRowlKIndex).Tag = 0 Then 
cmdRowll(Index).Tag = 1 
cmdRowll(Index).Caption = 1 
mirrorArray(10, Index) = 1 

Else 
cmdRowll(Index).Tag = 0 
cmdRowll(Index).Caption = 0 
mirrorArray(10, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl2_Click(Index As Integer) 

If cmdRowl2(Index).Tag = 0 Then 
cmdRowl2(Index).Tag = 1 
cmdRowl2(Index).Caption = 1 
mirrorArray(11, Index) = 1 

Else 
cmdRowl2(Index).Tag = 0 
cmdRowl2(Index).Caption = 0 
mirrorArray(11, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl3_Click(Index As Integer) 

If cmdRowl3(Index).Tag = 0 Then 
cmdRowl3(Index).Tag = 1 
cmdRowl3(Index).Caption = 1 
mirrorArray(12, Index) = 1 

Else 
cmdRowl3(Index).Tag = 0 
cmdRowl3(Index).Caption = 0 
mirrorArray(12, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl4_Click(Index As Integer) 

If cmdRowl4(Index).Tag = 0 Then 
cmdRowl4(Index).Tag = 1 
cmdRowl4(Index).Caption = 1 
mirrorArray(13, Index) = 1 

Else 
cmdRowl4(Index).Tag = 0 
cmdRowl4(Index).Caption = 0 
mirrorArray(13, Index) = 0 

End If 

End Sub 

Private Sub cmdRowl5_Click(Index As Integer) 

If cmdRowl5(Index).Tag = 0 Then 
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cmdRowl5(Index).Tag = 1 
cmdRowl5(Index).Caption = 1 
mirrorArray(14, Index) = 1 

Else 
cmdRowl5(Index).Tag = 0 
cmdRowl5(Index).Caption = 0 
mirrorArray(14, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl6_Click(Index As Integer) 

If cmdRowl6(Index).Tag = 0 Then 
cmdRowl6(Index).Tag = 1 
cmdRowl6(Index).Caption = 1 
mirrorArray(15, Index) = 1 

Else 
cmdRowl6(Index).Tag = 0 
cmdRowl6(Index).Caption = 0 
mirrorArray(15, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl7_Click(Index As Integer) 

If cmdRowl7(Index).Tag = 0 Then 
cmdRowl7(Index).Tag = 1 
cmdRowl7(Index).Caption = 1 
mirrorArray(16, Index) = 1 

Else 
cmdRowl7(Index).Tag = 0 
cmdRowl7(Index).Caption = 0 
mirrorArray(16, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl8_Click(Index As Integer) 

If cmdRowl8(Index).Tag = 0 Then 
cmdRowl8(Index).Tag = 1 
cmdRowl8(Index).Caption = 1 
mirrorArray(17, Index) = 1 

Else 
cmdRowl8(Index).Tag = 0 
cmdRowl8(Index).Caption = 0 
mirrorArray(17, Index) = 0 

End If 

End Sub 
Private Sub cmdRowl9_Click(Index As Integer) 

If cmdRowl9(Index).Tag = 0 Then 
cmdRowl9(Index).Tag = 1 
cmdRowl9(Index).Caption = 1 
mirrorArray(18, Index) = 1 

Else 
cmdRowl9(Index).Tag = 0 
cmdRowl9(Index).Caption = 0 
mirrorArray(18, Index) = 0 

End If 
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End Sub 
Private Sub cmdRow20_Click(Index As Integer) 

If cmdRow20(Index).Tag = 0 Then 
cmdRow20(Index).Tag = 1 
cmdRow20(Index).Caption = 1 
mirrorArray(19, Index) = 1 

Else 
cmdRow20(Index).Tag = 0 
cmdRow20(Index).Caption = 0 
mirrorArray(19, Index) = 0 

End If 

End Sub 
Private Sub cmdRow21_Click(Index As Integer) 

If cmdRow21(Index).Tag = 0 Then 
cmdRow21(Index).Tag = 1 
cmdRow21(Index).Caption = 1 
mirrorArray(20, Index) = 1 

Else 
cmdRow21(Index).Tag = 0 
cmdRow21(Index).Caption = 0 
mirrorArray(20, Index) = 0 

End If 

End Sub 
Private Sub cmdRow22_Click(Index As Integer) 

If cmdRow22(Index).Tag = 0 Then 
cmdRow22(Index).Tag = 1 
cmdRow22(Index).Caption = 1 
mirrorArray(21, Index) = 1 

Else 
cmdRow22(Index).Tag = 0 
cmdRow22(Index).Caption = 0 
mirrorArray(21, Index) = 0 

End If 

End Sub 
Private Sub cmdRow23_Click(Index As Integer) 

If cmdRow23(Index).Tag = 0 Then 
cmdRow23(Index).Tag = 1 
cmdRow23(Index).Caption = 1 
mirrorArray(22, Index) = 1 

Else 
cmdRow23(Index).Tag = 0 
cmdRow23(Index).Caption = 0 
mirrorArray(22, Index) = 0 

End If 

End Sub 
Private Sub cmdRow24_Click(Index As Integer) 

If cmdRow24(Index).Tag = 0 Then 
cmdRow24(Index).Tag = 1 
cmdRow24(Index).Caption = 1 
mirrorArray(23, Index) = 1 
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Else 
cmdRow24(Index).Tag = 0 
cmdRow24(Index).Caption = 0 
mirrorArray(23, Index) = 0 

End If 

End Sub 
Private Sub cmdRow25_Click(Index As Integer) 

If cmdRow25(Index).Tag = 0 Then 
cmdRow25(Index).Tag = 1 
cmdRow25(Index).Caption = 1 
mirrorArray(24, Index) = 1 

Else 
cmdRow25(Index).Tag = 0 
cmdRow25(Index).Caption = 0 
mirrorArray(24, Index) = 0 

End If 

End Sub 
Private Sub cmdRow2 6_Click(Index As Integer) 

If cmdRow26(Index).Tag = 0 Then 
cmdRow26(Index).Tag = 1 
cmdRow26(Index).Caption = 1 
mirrorArray(25, Index) = 1 

Else 
cmdRow26(Index).Tag = 0 
cmdRow26(Index).Caption = 0 
mirrorArray(25, Index) = 0 

End If 

End Sub 
Private Sub cmdRow27_Click(Index As Integer) 

If cmdRow27(Index).Tag = 0 Then 
cmdRow27(Index).Tag = 1 
cmdRow27(Index).Caption = 1 
mirrorArray(26, Index) = 1 

Else 
cmdRow27(Index).Tag = 0 
cmdRow27(Index).Caption = 0 
mirrorArray(26, Index) = 0 

End If 

End Sub 
Private Sub cmdRow28_Click(Index As Integer) 

If cmdRow28(Index).Tag = 0 Then 
cmdRow28(Index).Tag = 1 
cmdRow28(Index).Caption = 1 
mirrorArray(27, Index) = 1 

Else 
cmdRow28(Index).Tag = 0 
cmdRow28(Index).Caption = 0 
mirrorArray(27, Index) = 0 

End If 

End Sub 
Private Sub cmdRow29_Click(Index As Integer) 
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If cmdRow29(Index).Tag = 0 Then 
cmdRow29(Index).Tag = 1 
cmdRow29(Index).Caption = 1 
mirrorArray(28, Index) = 1 

Else 
cmdRow29(Index).Tag = 0 
cmdRow29(Index).Caption = 0 
mirrorArray(28, Index) = 0 

End If 

End Sub 
Private Sub cmdRow3 0_Click(Index As Integer) 

If cmdRow30(Index).Tag = 0 Then 
cmdRow30(Index).Tag = 1 
cmdRow30(Index).Caption = 1 
mirrorArray(29, Index) = 1 

Else 
cmdRow30(Index).Tag = 0 
cmdRow30(Index).Caption = 0 
mirrorArray(29, Index) = 0 

End If 

End Sub 
Private Sub cmdRow31_Click(Index As Integer) 

If cmdRow31(Index).Tag = 0 Then 
cmdRow31(Index).Tag = 1 
cmdRow31(Index).Caption = 1 
mirrorArray(30, Index) = 1 

Else 
cmdRow31(Index).Tag = 0 
cmdRow31(Index).Caption = 0 
mirrorArray(30, Index) = 0 

End If 

End Sub 
Private Sub cmdRow32_Click(Index As Integer) 

If cmdRow32(Index).Tag = 0 Then 
cmdRow32(Index).Tag = 1 
cmdRow32(Index).Caption = 1 
mirrorArray(31, Index) = 1 

Else 
cmdRow32(Index).Tag = 0 
cmdRow32(Index).Caption = 0 
mirrorArray(31, Index) = 0 

End If 

End Sub 

Public Sub enableConArray() 

For i = 0 To 31 
cmdRowl(i).Enabled = True 
cmdRow2(i).Enabled = True 
cmdRow3(i).Enabled = True 
cmdRow4(i).Enabled = True 
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cmdRow5(i) Enabled = True 
cmdRow6(i) Enabled = True 
cmdRow7(i) Enabled = True 
cmdRow8(i) Enabled = True 
cmdRow9(i) Enabled = True 
cmdRowl0(i .Enabled = True 
cmdRowll(i .Enabled = True 
cmdRowl2(i .Enabled = True 
cmdRowl3(i .Enabled = True 
cmdRowl4(i .Enabled = True 
cmdRowl5(i .Enabled = True 
cmdRowl6(i .Enabled = True 
cmdRowl7(i .Enabled = True 
cmdRowl8(i .Enabled = True 
cmdRowl9(i .Enabled = True 
cmdRow2 0(i .Enabled = True 
cmdRow21(i .Enabled = True 
cmdRow2 2(i .Enabled = True 
cmdRow2 3(i .Enabled = True 
cmdRow24(i .Enabled = True 
cmdRow2 5(i .Enabled = True 
cmdRow2 6(i .Enabled = True 
cmdRow2 7(i .Enabled = True 
cmdRow2 8(i .Enabled = True 
cmdRow2 9(i .Enabled = True 
cmdRow3 0(i .Enabled = True 
cmdRow31(i ).Enabled = True 
cmdRow3 2(i .Enabled = True 

Next i 

End Sub 

Public Sub disableConArrayO 
Dim i As Integer 

For l 0 To 31 
cmdRowl(i) Enabled = False 
cmdRow2(i) Enabled = False 
cmdRow3(i) Enabled = False 
cmdRow4(i) Enabled = False 
cmdRow5(i) Enabled = False 
cmdRow6(i) Enabled = False 
cmdRow7(i) Enabled = False 
cmdRow8(i) Enabled = False 
cmdRow9(i) Enabled = False 
cmdRowl0(i .Enabled = False 
cmdRowl1(i .Enabled = False 
cmdRowl2(i .Enabled = False 
cmdRowl3(i .Enabled = False 
cmdRowl4(i .Enabled = False 
cmdRowl5(i .Enabled = False 
cmdRowl6(i .Enabled = False 
cmdRowl7(i .Enabled = False 
cmdRowl8(i .Enabled = False 
cmdRowl9(i .Enabled = False 
cmdRow2 0(i .Enabled = False 
cmdRow21(i .Enabled = False 
cmdRow22(i ).Enabled = False 
cmdRow2 3(i .Enabled = False 
cmdRow2 4(i .Enabled = False 
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cmdRow25(i).Enabled = False 
cmdRow26(i).Enabled = False 
cmdRow27(i).Enabled = False 
cmdRow28(i).Enabled = False 
cmdRow29(i).Enabled = False 
cmdRow30(i).Enabled = False 
cmdRow31(i).Enabled = False 
cmdRow32(i).Enabled = False 

Next i 

End Sub 

Public Sub updateConArray() 

For j = 0 To 31 
cmdRowl(j 
cmdRowl(j 

cmdRow2(j 
cmdRow2(j 

cmdRow3(j 
cmdRow3(j 

cmdRow4(j 
cmdRow4(j 

cmdRow5(j 
cmdRow5(j 

cmdRow6(j 
cmdRow6(j 

cmdRow7(j 
cmdRow7(j 

cmdRow8(j 
cmdRow8(j 

cmdRow9(j 
cmdRow9(j 

cmdRowl0( 
cmdRowl0( 

cmdRowl1( 
cmdRowl1( 

cmdRowl2( 
cmdRowl2( 

cmdRowl3( 
cmdRowl3( 

cmdRowl4( 
cmdRowl4( 

cmdRowl5( 
cmdRowl5(j 

Caption = mirrorArray(0, j) 
Tag = mirrorArray(0, j) 

Caption = mirrorArray(1, j) 
Tag = mirrorArray(1, j) 

Caption = mirrorArray(2, j) 
Tag = mirrorArray(2, j) 

Caption = mirrorArray(3, j) 
Tag = mirrorArray(3, j) 

Caption = mirrorArray(4, j) 
Tag = mirrorArray(4, j) 

Caption = mirrorArray(5, j) 
Tag = mirrorArray(5, j) 

Caption = mirrorArray(6, j) 
Tag = mirrorArray(6, j) 

Caption = mirrorArray(7, j) 
Tag = mirrorArray(7, j) 

Caption = mirrorArray(8, j) 
Tag = mirrorArray(8, j) 

.Caption = mirrorArray(9, j) 

.Tag = mirrorArray(9, j) 

.Caption = mirrorArray(10, j) 

.Tag = mirrorArray(10, j) 

.Caption = mirrorArray(11, j) 

.Tag = mirrorArray(11, j) 

.Caption = mirrorArray(12, j) 

.Tag = mirrorArray(12, j) 

.Caption = mirrorArray(13, j) 

.Tag = mirrorArray(13, j) 

.Caption = mirrorArray(14, j) 

.Tag = mirrorArray(14, j) 
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cmdRowl6(j).Caption = mirrorArray(15, 
cmdRowl6(j).Tag = mirrorArray(15, j) 

cmdRowl7(j 
cmdRowl7(j 

cmdRowl8(j 
cmdRowl8(j 

cmdRowl9(j 
cmdRowl9(j 

cmdRow20(j 
cmdRow2 0(j 

cmdRow21(j 
cmdRow21(j 

cmdRow22(j 
cmdRow2 2(j 

cmdRow2 3(j 
cmdRow2 3(j 

cmdRow24(j 
cmdRow24(j 

cmdRow2 5(j 
cmdRow2 5(j 

cmdRow2 6(j 
cmdRow2 6(j 

cmdRow27(j 
cmdRow2 7(j 

cmdRow2 8(j 
cmdRow2 8(j 

cmdRow2 9(j 
cmdRow2 9(j 

cmdRow3 0(j 
cmdRow3 0(j 

cmdRow31(j 
cmdRow31(j 

cmdRow3 2(j 
cmdRow3 2(j 

j) 

.Caption = mirrorArray(16, j) 

.Tag = mirrorArray(16, j) 

.Caption = mirrorArray(17, j) 

.Tag = mirrorArray(17, j) 

.Caption = mirrorArray(18, j) 

.Tag = mirrorArray(18, j) 

.Caption = mirrorArray(19, j) 

.Tag = mirrorArray(19, j) 

.Caption = mirrorArray(20, j) 

.Tag = mirrorArray(20, j) 

.Caption = mirrorArray(21, j) 

.Tag = mirrorArray(21, j) 

.Caption = mirrorArray(22, j) 

.Tag = mirrorArray(22, j) 

.Caption = mirrorArray(23, j) 

.Tag = mirrorArray(23, j) 

.Caption = mirrorArray(24, j) 

.Tag = mirrorArray(24, j) 

.Caption = mirrorArray(25, j) 

.Tag = mirrorArray(25, j) 

.Caption = mirrorArray(26, j) 

.Tag = mirrorArray(26, j) 

.Caption = mirrorArray(27, j) 

.Tag = mirrorArray(27, j) 

.Caption = mirrorArray(28, j) 

.Tag = mirrorArray(28, j) 

.Caption = mirrorArray(29 , j) 

.Tag = mirrorArray(29, j) 

.Caption = mirrorArray(30, j) 

.Tag = mirrorArray(30, j) 

.Caption = mirrorArray(31, j) 

.Tag = mirrorArray(31, j) 

End Sub 
Next j 

'multiConArray() 
'- lets user know when mirror is in non-bistable mode 
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , / i i i i i i i i i i i i i i i 

Public Sub multiConArray() 

For j = 0 To 31 
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cmdRowl(j) Caption = "X" 
cmdRow2(j) Caption = "X" 
cmdRow3(j) Caption = "X" 
cmdRow4(j) Caption = "X" 
cmdRow5(j ) Caption = "X" 
cmdRow6(j) Caption = "X" 
cmdRow7(j) Caption = "X" 
cmdRow8(j) Caption = "X" 
cmdRow9(j) Caption = "X" 
cmdRowl0(j .Caption = "X" 
cmdRowl1(j .Caption = "X" 
cmdRowl2(j .Caption = "X" 
cmdRowl3(j .Caption = "X" 
cmdRowl4(j .Caption = "X" 
cmdRowl5(j .Caption = "X" 
cmdRowl6(j .Caption = "X" 
cmdRowl7(j .Caption = "X" 
cmdRowl8(j .Caption = "X" 
cmdRowl9(j .Caption = "X" 
cmdRow2 0(j .Caption = "X" 
cmdRow21(j .Caption = "X" 
cmdRow2 2(j .Caption = "X" 
cmdRow2 3(j .Caption = "X" 
cmdRow2 4(j .Caption = "X" 
cmdRow2 5(j .Caption = "X" 
cmdRow2 6(j .Caption = "X" 
cmdRow2 7(j .Caption = "X" 
cmdRow2 8(j .Caption = "X" 
cmdRow2 9(j .Caption = "X" 
cmdRow3 0(j .Caption = "X" 
cmdRow31(j .Caption = "X" 
cmdRow3 2(j ).Caption = "X" 

Next j 

End Sub 

The following is the complete contents of modLAMAfunctions.bas: 

i  i i i i  i  i i . i i i  i i  i  i i 
Attribute VB_Name = "modLAMAfunctions" 

I   I   t   i   t   I   I   i   tilt   I   i   i   I   t   i   I   t   i   t   I   t   I   I   I   I   I   I   I   i   I   t   I   I   r   I   t   I 

modLAMAfunctions.bas 
for ProjectLAMA.vbp 
by Harris Hall 

- NOTE: ProjectLAMA.exe should reside in C:\LAMA with additional *.exe files 
it calls 
- contains all text file manipulation functions 
- contains mirrorArray() manipulation within createliasonfile() function 
- contains all executable file call functions (*.exe calls) 

t   I   I   I   I   I   I 

'Declare Global Variables 

Public mirrorArray(31, 31) As Byte 'stores 2D Bi-Stable Array Pattern 

'createPatternFile() 
'- creates a text file that contains a map of the 32x32 binary array 
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can only be used by GUI 
file extension is *.pat 

i i * i i i i i i i i i i i i i f i i i i i i i i i i i i i i i i   i  r  i   i  i   i   i  i 

Public Sub createPatternFilefpatternFileName As String) 

'Declare variables 
Dim i, j As Integer 
Dim pfobject, pat 

'Uses FileSystemObject Object 
Set pfobject = CreateObject("Scripting.FileSystemObject") 

If Len(patternFileName) > 1 Then 'checks for Cancel button case 

'NOTE: Overwriting of existing file enabled, ASCII file created 
Set pat = pfobject.CreateTextFile(patternFileName, True) 

'Space delimiting allows pattern to be easily read by MATLAB 
For i = 0 To 31 

For j = 0 To 31 

pat.Write mirrorArray(i, j) 
pat.Write (" ") 'Inserts space between numbers 

Next j 

pat.WriteBlankLines 1 

Next i 

pat.Close 

Else 

MsgBox "Invalid Filename", vbExclamation, "Error in User Input" 

End If 

End Sub 

, t , , i i i i i i , i i i i t i i i i i i I I I 1 i i I I 1 I i t I I 1 I ' 1 r I I I i I I t i I i I 1 I I 1 i I t I 1 i i i t I I 

readPatternFile() 
- reads a text file that contains a map of the 32x32 binary array 
- can only be used by GUI 
- file extension is *.pat 
■ i i i i i i t , i i i i i i i i i i r i i i r i i i i i i ( i i < ■ i ■ > i ' < ' < ' < ' ' ' ' ■ < ■ ' ' ' ' 

Public Sub readPatternFile(patternFileName As String) 

'Declare variables 
Dim i, j As Integer 
Dim pfobject, f, ts 
Dim verify As Boolean 

'Uses FileSystemObject Object 
Set pfobject = CreateObject("Scripting.FileSystemObject") 
verify = pfobject.FileExists(patternFileName) 
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If verify = True Then 'checks for valid path name 
Set f = pfobject.GetFile(patternFileName) 
Set ts = f .OpenAsTextStreamd, 0) 
'NOTE: ForReading only, ASCII file created 

For i = 0 To 31 

For j = 0 To 31 

mirrorArray(i, j) = ts.Read(l) 
ts.Skip (1)      'Skips over space 

Next j 

ts.SkipLine 

Next i 

ts.Close 

Else 

MsgBox "Invalid Filename", vbExclamation, "Error in User Input" 

End If 

End Sub 

createLiasonFile() 
1) transfers 32x32 mirrorArray() to inverted 32x32 invMirrorArray() 
2) transfers 32x32 invMirrorArray() to 1024x32 binary array 
3) transfers 1024x32 binary array to 1-D char array 4096 long 

(each element represents 8-bit word) in form of text liasonfile 

Public Sub createLiasonFile() 

'Declare local variables 
Dim a As Integer 
Dim invMirrorArray(31, 31) As Byte 'used to store inverted 32x32 array 
Dim rectArray(1023, 31) As Byte 'used to store 1024x32 binary array 
Dim wordValue As Integer   'used to store 8-bit words 
Dim i, j As Integer 
Dim fso, lfile 

wordValue = 0 'initialize contents of wordValue 

' Step 1 - Inverts 32x32 mirrorarray() and stores as invMirrorArray 

For i = 0 To 31 

For j = 0 To 31 

invMirrorArray(j, i) = mirrorArray(i, j) 

Next j 

Next i 
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i = 0  'reinitialize variables 
j = 0 

' Step 2 - Transfer 32x32 inverted array to 1024x32 Binary array 

For i = 0 To 31 

For j = 0 To 31 

If invMirrorArray(i, j) = 0 Then 

'loop assigns 32 rows in 1024x32 for every 1 row in 32x32 
For a = (i * 32) To ((i * 32) + 31) 

rectArrayfa, j) = 0 

Next a 

Elself invMirrorArray(i, j) = 1 Then 

'loop assigns 32 rows in 1024x32 for every 1 row in 32x32 
For a = (i * 32) To ((i * 32) + 31) 

rectArrayfa, j) = 1 

Next a 

Else 
'for all other values display error messagebox 
'message box displays faulty coordinate and value 
MsgBox "Non-Binary Value Read" & vbCrLf & "(" & i & "," & j & 

& invMirrorArray(i, j), vbCritical, "Error in array 
conversion' 

Exit Sub 

End If  'end conditional structure 

Next j    'end for loop for j 

Next i  'end for loop for i 

i = 0  'reinitialize counters 
j = 0 

' Step 3 - Transfer 1024x32 array to 1-D integer array in liason text file 
'- Segments contents of rectArray into 8-bit binary segments 
'- Completes binary to base 10 conversion (max value 255) 
'- Downloads integers to liason file (lfile.mem) 
'- Ex. 00001111 binary (OxOF hex) -> 15 decimal 
'- pokeb C++ code will read in as char type 

'operating filename and path set below 
'if file doesn't already exist it is automatically created 

'opens lfile.mem (need to have short MS-DOS filename extension) 
Set fso = CreateObject("Scripting.FileSystemObject") 
Set lfile = fso.CreateTextFile("c:\LAMA\lfile.mem", True) 

132 



For i = 0 To 1023 

For j = 1 To 32 

If (j Mod 8=0) Then 

' add final 8th bits contribution to wordValue 
wordValue = wordValue + rectArrayd, j - 1) 

'write line to liason file 
lfile.WriteLine wordValue 

wordValue = 0  ' clear wordString for new word 

Else 
'converts 8-bit binary data to base 10 value 
wordValue = wordValue + _ 

(rectArrayd, j - 1) * (2 A (8 - (j Mod 8)))) 

End If 

Next j 

Next i 

lfile.Close   'Closes liasonfile.mem 

End Sub 

,,,,,,   r   ,(,,,,,   t   I   I   I   t   I   t   I   I   I   t   I   I   i   I   I   I   t   t   I   I   t   I   f   I   I   I   I   I   I   I   I   t   I   i   I   I   i   t   t   I   I   I   I   >   I   t   I   t   i   I   t   I   I   I   I   t   I 

lowSetArray() 
- initialize storage array to zero ("Up" Position across array) 
- calls lowSet.exe (quicker than performing conversion 
, , , , , , , , i i t , t i i i i t i i i i i i i t i i * i i t i ' i ' * > i ' i ' i i ' ' ' ' ' ' * ' * ' * ' f ' ' * ' ' ' ' ' ' ' ' ' ' ' ' 

Public Sub IowSetArrayO 

'Declare variables 
Dim i, j As Integer 
Dim RetVal As Variant 

For i = 0 To 31 
For j = 0 To 31 

mirrorArray(i, j) = 0 
Next j 

Next i 

' Specifying 1 as the second argument opens the application 
in normal mode and gives it the focus. 

RetVal = Shell("C:\LAMA\lowSet.EXE", 1)   ' Runs Low Output 

End Sub 

i i i i t i i I  I   I  r  I   I  I  I 

highSetArray() 
- initialize storage array to 1 ("Snap Down" Position across array) 
- calls highSet.exe (quicker then performing conversion) 

t   §   i   i   r   i   t   i   i   , 
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Public Sub highSetArray() 

'Declare variables 
Dim i, j As Integer 
Dim RetVal As Variant 

For i = 0 To 31 
For j = 0 To 31 

mirrorArray(i, j) =1 
Next j 

Next i 

RetVal = Shell("C:\LAMA\highSet.EXE", 1)   ' Runs High Output 

End Sub 

'testSlasht) 
'- calls testSlash.exe 

Public Sub testSlashO 

'Declare variables 
Dim RetVal As Variant 

' Specifying 1 as the second argument in Shell opens the application 
in normal mode and gives it the focus. 

RetVal = Shell("C:\LAMA\testSlash.EXE", 1)   ' Runs Forward Test Slash 

Output 

End Sub 
,,,,,,,,,,,,,,,,,, i , t i t , i i i i i i i t i i i i i i i t i i t i i > i t i i t i t * i i i i i i i i i t i i i > i i * 

'memSetArray() 
'- calls memSet.exe 
, , , , / , / / / / , / / , i i t i i i i i t i i i i i i i i i i i i i i i i i i t i i i i i i i i i i i t i i i i i i i i i i i i i i i • i 

Public Sub memSetArray() 

'Declare variables 
Dim RetVal As Variant 

' Specifying 1 as the second argument in Shell opens the application 
'   in normal mode and gives it the focus. 

RetVal = Shell("C:\LAMA\memSet.EXE", 1)   ' Runs Binary pattern interpreter 

End Sub 

'upTi1tArray() 
'- calls upTilt.exe 
, , , , , / , , / , , i , i , , i i t i i i * i i i i i i i i i i i i i i i i > i i > i i * i i i ' ' > < ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

Public Sub upTiltArrayO 

'Declare variables 
Dim RetVal As Variant 

' Specifying 1 as the second argument in Shell opens the application 
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in normal mode and gives it the focus. 

RetVal = Shell("C:\LAMA\upTilt.EXE", 1)   ' Runs Upwards Tilt pattern 

End Sub 

'downTiItArray() 
'- calls downTilt.exe 
/ i i i i i i i i i i i i i i i i t i t i t i i i i 

Public Sub downTiltArrayO 

/ i i i i i i i i i i i i i i i i i 

'Declare variables 
Dim RetVal As Variant 

' Specifying 1 as the second argument in Shell opens the application 
in normal mode and gives it the focus. 

RetVal = Shell("C:\LAMA\downTilt.EXE", 1)   ' Runs Downwards Tilt pattern 

End Sub 
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APPENDIX B - LAMACON C++ CODE 

The included code was written and compiled in Borland C++ version 3.1 for MS- 

DOS. This code was used to create the various MS-DOS executable files that handled 

the physical memory manipulation for the LAMACON software used in testing the 

LAMA device. The Borland help files and Deitel & Deitel's book C++ How to Program 

were used as a reference for syntax [16]. 

There were six separate programs created: lowSet.exe, highSet.exe, testSlash.exe, 

memSet.exe, downTilt.exe, and upTilt.exe. The contents of their corresponding *.cpp 

C++ code files are listed below. 

/* 
// lowSet.CPP 
// part of: 
//    LAMACON - Line-Addressable Micromirror Array CONtrol Software 
//    Version 1.1 - by Harris Hall 
// SUMMARY - Sets all elements in array to low voltage 
//Executable form is lowSet.exe called by LAMACON GUI (ProjectLAMA.exe) 
//Can also be called seperately 
// NOTE: This code is intended to manipulate physical memory directly. 
// It can only be compiled using Windows 3.1 API (16-bit), specifically 
// Borland C++ v 3.1 is intended. 
// WIN32 API does not permit manipulation of physical memory without 
// the aid of a device driver kit (DDK). 
*/ 

#include <dos.h>   // Borland C++ specific header file - defines pokeb function 
#include <iostream.h> 

int main(void) 
{ 

cout « "LAMACON Version 1.1 \n"; 
cout « "Line Addressable Micromirror Array CONtrol Software \n"; 
cout << "\n"; 
cout « "Writing OOh to Memory (CF000..CFFFF)\n" ; 

// memory block is 1-D 8-bit char array 4096 elements long 
// OxCFOO is starting memory block 
for (int i=0;i<4096;i++) 
{ 

pokeb(0xCF00, i, 0x00); //fills memory block with zeros 

} 
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return 0; //exit program 

} 

7* 
// highSet.CPP 
// part of: 
//LAMACON - Line-Addressable Micromirror Array CONtrol Software 
//Version 1.1 - by Harris Hall 
//SUMMARY - Sets all elements in array to high voltage 
//Executable form is highSet.exe called by LAMACON GUI (ProjectLAMA.exe) 
// Can also be called seperately 
// NOTE: This code is intended to manipulate physical memory directly. 
// It can only be compiled using Windows 3.1 API (16-bit), specifically 
// Borland C++ v 3.1 is intended. 
// WIN32 API does not permit manipulation of physical memory without 
// the aid of a device driver kit (DDK). 
*/ 

#include <dos.h>   // Borland C++ specific header file - defines pokeb function 
#include <iostream.h> 

int main(void) 
{ 

cout « "LAMACON Version 1.1 \n"; 
cout « "Line Addressable Micromirror Array CONtrol Software \n"; 
cout << "\n"; 
cout « "Writing FFh to Memory (CF00O..CFFFF)\n" ; 

// memory block is 1-D 8-bit char array 4096 elements long 
// OxCFOO is starting memory block 
for (int i=0;i<4096;i++) 
{ 

pokeb(0xCF00, i, OxFF); //fills memory block with ones 

} 
return 0; //exit program 

} 

/* 
// testSlash.CPP 
// part of:  LAMACON - Line-Addressable Micromirror Array CONtrol Software 
// Version 1.1 - by Harris Hall 
// SUMMARY - Set Forward Slash Test Pattern to memory 
// Executable form is highSet.exe called by LAMACON GUI (ProjectLAMA.exe) 
// Can also be called seperately 
// NOTE: This code is intended to manipulate physical memory directly. 
// It can only be compiled using Windows 3.1 API (16-bit), specifically 
// Borland C++ v 3.1 is intended. 
// WIN32 API does not permit manipulation of physical memory without 
// the aid of a device driver kit (DDK). 

*/ 

#include <dos.h>       // Borland C++ specific header file - defines pokeb 
function 
#include <iostream.h> 

int main(void) 
{ 

static char fslash [64] = {OxFF,0x00,OxFF,0x00, OxFE,0x01,OxFE,0x01, 
OxFC,0x03,OxFC,0x03, 0xF8,0x07,0xF8,0x07, 
OxFO,OxOF,OxFO,OxOF, OxEO,OxlF,OxEO,OxlF, 
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\n" 

OxCO,0x3F,OxCO,0x3F, 0x80,0x7F,0x80,0x7F, 
0x00,OxFF,0x00,OxFF, 0x01,OxFE,0x01,OxFE, 
0x03,OxFC,0x03,OxFC, 0x07,0xF8,0x07,0xF8, 
OxOF,OxFO,OxOF,OxFO, OxlF,OxEO,OxlF,OxEO, 
0x3F,OxCO,0x3F,OxCO, 0x7F,0x80,Ox7F,0x80}; 

cout « "LAMACON Version 1.1 \n"; 
cout << "Line Addressable Micromirror Array CONtrol Software \n"; 
cout « "\n" ,- 
cout « "Writing a Fwd-Slash Diagonal Pattern to Memory (CF000..CFFFF) 

for (int i=0;i<64;i++) { //# of times to repeat fslash pattern 
for (int j = 0;j<64;j++) { //# of bytes in fslash pattern 

pokeb(0xCF00, (64*i)+j, fslash[j]); 

} 
} 

return 0; 

} 

/* 
// memSet.CPP 
// part of: 
//LAMACON - Line-Addressable Micromirror Array CONtrol Software 
//Version 1.1 - by Harris Hall 
// SUMMARY - Reads in lfile.mem and outputs contents to physical memory block 
// lfile.mem needs to be in C:\LAMA directory 
// Executable form is memSet.exe called by LAMACON GUI (ProjectLAMA.exe) 
//  Can  also  be  called  seperately  however  requires  previously  created 
liasonfile.mem 
// NOTE: This code is intended to manipulate physical memory directly. 
//It can only be compiled using 16-bit DOS API, specifically 
// Borland C++ v 3.1 for MS-DOS is intended. 
// WIN32 API does not permit manipulation of physical memory without 
// the aid of a device driver kit (DDK). 
*/ 

♦include <dos.h>   // Borland C++ specific header file - defines pokeb function 
♦include <stdlib.h>   // includes exit and atoi() function - string to int 
converter 
#include <fstream.h> // includes iostream.h and ifstream() functions 
♦include <string.h> // allows string manipulation functions 
♦include <iomanip.h> // allows setwO function 

int main(void) 
{ 

int inumber;     // stores 8-bit int number 
char segment[4];  // stores 8-bit string segment 

int i = 0; //initialize counter variable 

ifstream inPatternFile; // creates ifstream object 

cout « "LAMACON Version 1.1 \n" ; 
cout « "Line Addressable Micromirror Array CONtrol Software \n"; 
cout « "\n"; 
cout « "Writing Bi-Stable Signal Pattern to Memory \n"; 

//ifstream constructor opens the file 
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input 
inPatternFile.open(    "Ifile.mem",    ios::in    ) ;    //opens    liasonfile.mem   for 

if   (   ÜnPatternFile   ) 
{ 

cerr « "File could not be opened" « endl; 
exit ( 1 ) ; 

} 

// memory block is 1-D 8-bit char array 4096 elements long 
// OxCFOO is starting memory block 
// sets maximum number of digits to 4 
while (inPatternFile » setw( 4 ) » segment) 

{ 

inumber = atoi(segment);  // converts string to integer 
cout << i << " " << inumber << endl; 
pokeb(0xCF00, i , inumber);  // downloads to memory 
i = i+1;    //increments to next address 

} 

inPatternFile.closet); //closes ifstream object 

return 0; //exit program 

/* 
// downTilt.CPP 
// part of:  LAMACON - Line-Addressable Micromirror Array CONtrol Software 
// Version 1.1 - by Harris Hall 
// SUMMARY - Sets PWM Vertical Downward Voltage Ramp to memory 
// For operation ABOVE cutoff 
// Vrms voltage levels to be interpreted 
// Executable   form  is   downTilt.exe   called  by  LAMACON  GUI 
(ProjectLAMA.exe) 
// Can also be called seperately 
// NOTE: This code is intended to manipulate physical memory directly. 

// 
// 
// 
// 
*/ 

It can only be compiled using Windows 3.1 API (16-bit), specifically 
Borland C++ v 3.1 is intended. 
WIN32 API does not permit manipulation of physical memory without 
the aid of a device driver kit (DDK). 

#include <dos.h> 
function 
#include <iostream.h> 

// Borland C++ specific header file - defines pokeb 

int main(void) 
{ 

// Define PWM signals pattern 
static char segmentblockO 
static char segmentblockl 
static char segmentblock2 
static char segmentblock3 
static char segmentblock4 
static char segmentblock5 
static char segmentblock6 
static char segmentblock7 
static char segmentblock8 

[4] = {0x7F, OxFF, OxFF, OxFF} 
[4] = {0x3F, OxFF, OxFF, OxFF} 
[4] = {OxlF, OxFF, OxFF, OxFF} 
[4] = {OxOF, OxFF, OxFF, OxFF} 
[4] = {0x07, OxFF, OxFF, OxFF} 
[4] = {0x03, OxFF, OxFF, OxFF} 
[4] = {0x01, OxFF, OxFF, OxFF} 
[4] = {0x00, OxFF, OxFF, OxFF} 
[4] = {0x00, 0x7F, OxFF, OxFF} 
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static char segmentblock9 4] 
static char segmentblocklO 4] 
static char segmentblockl1 4] 
static char segmentblockl2 4] 
static char segmentblockl3 4] 
static char segmentblockl4 4] 
static char segmentblockl5 4] 
static char segmentblockl6 4] 
static char segmentblockl7 4] 
static char segmentblockl8 4] 
static char segmentblockl9 4] 
static char segmentblock2 0 4] 
static char segmentblock21 4] 
static char segmentblock22 4] 
static char segmentblock23 4] 
static char segmentblock24 4] 
static char segmentblock2 5 4] 
static char segmentblock2 6 4] 
static char segmentblock27 4] 
static char s egmentblock2 8 4] 
static char segmentblock2 9 4] 
static char segmentblock3 0 [4] 
static char segmentblock31 [4] 

{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 
{0x00 

, 0x3F, OxFF, OxFF}; 
, OxlF, OxFF, OxFF}; 
, OxOF, OxFF, OxFF}; 
, 0x07, OxFF, OxFF}; 
, 0x03, OxFF, OxFF}; 
, 0x01, OxFF, OxFF}; 
, 0x00, OxFF, OxFF}; 
, 0x00, 0x7F, OxFF}; 
, 0x00, 0x3F, OxFF}; 
, 0x00, OxlF, OxFF}; 
, 0x00, OxOF, OxFF}; 
, 0x00, 0x07, OxFF}; 
, 0x00, 0x03, OxFF}; 
, 0x00, 0x01, OxFF}; 
, 0x00, 0x00, OxFF}; 
, 0x00, 0x00, Ox7F}; 
, 0x00, 0x00, 0x3F}; 
, 0x00, 0x00, OxlF}; 
, 0x00, 0x00, OxOF}; 
, 0x00, 0x00, 0x07}; 
, 0x00, 0x00, 0x03}; 
, 0x00, 0x00, 0x01}; 
, 0x00, 0x00, 0x00}; 

\n"; 

int counter = 0; //initialize global counter variable 
int i,j = 0; // initialize loop counter variable 

cout « "LAMACON Version 1.1 \n"; 
cout « "Line Addressable Micromirror Array CONtrol Software \n"; 
cout « "\n"; 
cout « "Writing Upward Voltage Ramp / upTilt Pattern to (CF00..CFFF) 

cout « "For operation ABOVE cutoff frequency!  \n"; 

// Repeats diagonal quanta pattern 
// Signals constructed to maximize central frequency component 
for (i=0;i<32;i++) 
{ //# of times to repeat each segment block 

//segmentblockO download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockO[j]); 
counter++; // increment global counter 

} 

//segmentblockl download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl[j]); 
counter++; // increment global counter 

} 

//segmentblockl download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl[j]); 
counter++; // increment global counter 

} 
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//segmentblock2 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock2[j]); 
counter++; // increment global counter 

} 

//segmentblock3 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock3[j]); 
counter++; // increment global counter 

} 

//segmentblock4 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock4[j]); 
counter++; // increment global counter 

} 

//segmentblock5 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock5[j]); 
counter++; // increment global counter 

} 

//segmentblock6 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock6[j]); 
counter++; // increment global counter 

} 

//segmentblock7 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock7[j]); 
counter++; // increment global counter 

} 

//segmentblock8 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(OxCFO 0, counter, segmentblock8[j]); 
counter++; // increment global counter 

} 

//segmentblock9 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(OxCFO0, counter, segmentblock9[j]); 
counter++; // increment global counter 

} 

//segmentblocklO download to memory 
for (j=0;j<4;j++) 
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{ //# of 8-bit parts in each 32-bit segment block 
pokeb(0xCF00, counter, segmentblocklO[j]); 
counter++; // increment global counter 

} 

//segmentblockll download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockll[j]); 
counter++; // increment global counter 

} 

//segmentblockl2 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl2[j]); 
counter++; // increment global counter 

} 

//segmentblockl3 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl3[j]); 
counter++; // increment global counter 

} 

//segmentblockl4 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl4[j]); 
counter++; // increment global counter 

} 

//segmentblockl5 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl5[j]); 
counter++; // increment global counter 

} 

//segmentblockl6 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl6[j]); 
counter++; // increment global counter 

} 

//segmentblockl7 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl7[j]); 
counter++; // increment global counter 

} 

//segmentblockl8 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl8[j]); 
counter++; // increment global counter 

} 
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//segmentblockl9 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl9[j]); 
counter++; // increment global counter 

} 

//segmentblock20 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock20[j]); 
counter++; // increment global counter 

} 

//segmentblock21 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(OxCFO 0, counter, segmentblock21[j]); 
counter++; // increment global counter 

> 

//segmentblock22 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock22[j]); 
counter++; // increment global counter 

} 

//segmentblock23 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock23[j]); 
counter++; // increment global counter 

} 

//segmentblock24 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock24[j]); 
counter++; // increment global counter 

} 

//segmentblock25 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock25[j]); 
counter++; // increment global counter 

} 

//segmentblock26 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock26[j]); 
counter++; // increment global counter 

} 

//segmentblock27 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 
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pokeb(OxCFOO, counter, segmentblock27[j]); 
counter++; // increment global counter 

} 

//segmentblock28 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock28[j]); 
counter++; // increment global counter 

} 

//segmentblock29 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(OxCFO 0, counter, segmentblock2 9[j]); 
counter++; // increment global counter 

} 

//segmentblock30 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock30[j]); 
counter++; // increment global counter 

} 

//segmentblock31 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock31[j]); 
counter++; // increment global counter 

} 

//segmentblock32 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock32[j]); 
counter++; // increment global counter 

} 

} 

cout << counter << endl; 

return 0; // exit program 

}// end of downTilt.cpp 

/* 
// upTilt.CPP 
// part of:  LAMACON - Line-Addressable Micromirror Array CONtrol Software 
//        Version 1.1 - by Harris Hall 
// SUMMARY - Sets PWM Vertical Upward Voltage Ramp to memory 
// For operation ABOVE cutoff 
//        Vrms voltage levels to be interpreted 
// Executable   form   is   upTilt.exe   called   by   LAMACON   GUI 
(ProjectLAMA.exe) 
// Can also be called seperately 
// NOTE: This code is intended to manipulate physical memory directly. 
//     It can only be compiled using Windows 3.1 API (16-bit), specifically 
//     Borland C++ v 3.1 is intended. 
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//     WIN32 API does not permit manipulation of physical memory without 
//     the aid of a device driver kit (DDK). 
*/ 

#include <dos.h> 
function 
#include <iostream.h> 

// Borland C++ specific header file - defines pokeb 

int main(void) 
{ 

// Defi 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 
static 

\n" 

ne 32 PWM signal quanta 
char segmentblockO 
char segmentblockl 
char segmentblock2 
char segmentblock3 
char segmentblock4 
char segmentblock5 
char segmentblock6 
char segmentblock7 
char segmentblock8 
char segmentblock9 
char segmentblockl0 
char segmentblockl1 
char segmentblockl2 
char segmentblockl3 
char segmentblockl4 
char segmentblockl5 
char segmentblockl6 
char segmentblockl7 
char segmentblockl8 
char segmentblockl9 
char segmentblock2 0 
char segmentblock21 
char segmentblock22 
char segmentblock23 
char segmentblock24 
char segmentblock25 
char segmentblock26 
char segmentblock27 
char segmentblock28 
char segmentblock29 
char segmentblock30 
char segmentblock31 

nta - These will construct pulses 
[4] = {OxFF OxFF OxFF, OxFE}, 
[4] = {OxFF OxFF OxFF, OxFC}, 
[4] = {OxFF OxFF OxFF, 0xF8}, 
[4] = {OxFF OxFF OxFF, OxFO}, 
[4] = {OxFF OxFF OxFF, OxEO}, 
[4] = {OxFF OxFF OxFF, OxCO} 
[4] = {OxFF OxFF OxFF, 0x80} 
[4] = {OxFF OxFF OxFF, 0x00} 
[4] = {OxFF OxFF OxFE, 0x00} 
[4] = {OxFF OxFF OxFC, 0x00} 
[4] = {OxFF OxFF 0xF8, 0x00} 
[4] = {OxFF OxFF OxFO, 0x00} 
[4] = {OxFF OxFF OxEO, 0x00} 
[4] = {OxFF OxFF OxCO, 0x00} 
[4] = {OxFF OxFF 0x80, 0x00} 
[4] = {OxFF OxFF 0x00, 0x00} 
[4] = {OxFF OxFE 0x00, 0x00} 
[4] = {OxFF OxFC 0x00, 0x00} 
[4] = {OxFF 0xF8 0x00, 0x00} 
[4] = {OxFF OxFO 0x00, 0x00} 
[4] = {OxFF OxEO 0x00, 0x00} 
[4] = {OxFF OxCO 0x00, 0x00} 
[4] = {OxFF 0x80 0x00, 0x00} 
[4] = {OxFF 0x00 0x00, 0x00} 
[4] = {OxFE 0x00 0x00, 0x00} 
[4] = {OxFC 0x00 0x00, 0x00} 
[4] = {0xF8 0x00 0x00, 0x00} 
[4] = {OxFO , 0x00 , 0x00, 0x00} 
[4] = {OxEO , 0x00 0x00, 0x00} 
[4] = {OxCO , 0x00 , 0x00, 0x00} 
[4] = {0x80 , 0x00 , 0x00, 0x00} 
[4] = {0x00 , 0x00 , 0x00, 0x00} 

int counter = 0; //initialize global counter variable 
int i,j = 0; // initialize loops couter variables 

cout « "LAMACON Version 1.1 \n"; 
cout « "Line Addressable Micromirror Array CONtrol Software \n"; 
cout « "\n"; 
cout « "Writing Upward Voltage Ramp / upTilt Pattern to (CF00..CFFF) 

cout « "For operation ABOVE cutoff frequency!  \n"; 

// Repeats diagonal quanta pattern 32 times 
// Pulses constructed to keep central frequency component as 
//  large as possible 
for (i=0;i<32;i++) 
{ //# of times to repeat each segment block 
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//segmentblockO download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockO[j]); 
counter++; // increment global counter 

} 

//segmentblockl download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl[j]); 
counter++; // increment global counter 

} 

//segmentblock2 dowload to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock2[j]); 
counter++; // increment global counter 

} 

//segmentblock3 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock3[j]); 
counter++; // increment global counter 

} 

//segmentblock4 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock4[j]); 
counter++; // increment global counter 

} 

//segmentblock5 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock5[j]); 
counter++; // increment global counter 

} 

//segmentblock6 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock6[j]); 
counter++; // increment global counter 

} 

//segmentblock7 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock7[j]); 
counter++; // increment global counter 

} 

//segmentblock8 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock8[j]); 
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counter++; // increment global counter 

} 

//segmentblock9 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock9[j]); 
counter++; // increment global counter 

} 

//segmentblocklO download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblocklO[j]) ; 
counter++; // increment global counter 

} 

//segmentblockll download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockll[j]); 
counter++; // increment global counter 

} 

//segmentblockl2 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl2[j]); 
counter++; // increment global counter 

} 

//segmentblockl3 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl3[j]); 
counter++; // increment global counter 

} 

//segmentblockl4 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl4[j]); 
counter++; // increment global counter 

} 

//segmentblockl5 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl5[j]); 
counter++; // increment global counter 

} 

//segmentblockl6 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblocklO[j]); 
counter++; // increment global counter 

} 

//segmentblockl7 download to memory 
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for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl7[j]); 
counter++; // increment global counter 

} 

//segmentblockl8 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl8[j]); 
counter++; // increment global counter 

} 

//segmentblockl9 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblockl9[j]) ; 
counter++; // increment global counter 

} 

//segmentblock20 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock20[j]); 
counter++; // increment global counter 

} 

//segmentblock21 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock21[j]); 
counter++; // increment global counter 

} 

//segmentblock22 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock22[j]); 
counter++; // increment global counter 

} 

//segmentblock23 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock23[j]); 
counter++; // increment global counter 

} 

//segmentblock24 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock24[j]); 
counter++; // increment global counter 

} 

//segmentblock25 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock25[j]); 
counter++; // increment global counter 
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} 

//segmentblock26 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock26[j]) ; 
counter++; // increment global counter 

} 

//segmentblock27 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock27[j]); 
counter++; // increment global counter 

} 

//segmentblock28 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock28[j]); 
counter++; // increment global counter 

} 

//segmentblock29 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock29[j]); 
counter++; // increment global counter 

} 

//segmentblock30 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock30[j]); 
counter++; // increment global counter 

} 

//segmentblock31 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock31[j]); 
counter++; // increment global counter 

} 

//segmentblock32 download to memory 
for (j=0;j<4;j++) 
{ //# of 8-bit parts in each 32-bit segment block 

pokeb(0xCF00, counter, segmentblock32[j]); 
counter++; // increment global counter 

} 

} 

cout << counter «endl; 

return 0; // exit program 

} //end of upTilt.cpp 
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APPENDIX C -AMPLIFICATION BOARD SCHEMATIC 
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APPENDIX D - AMPLIFICATION BOARD LAYOUT 
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APPENDIX E - MICROMIRROR ARRAY DESIGN LAYOUT 
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Cronos Integrated Microsystem's Multi-User MEMS Process (MUMPs™) Line- 

addressable micromirror array design. Same layout was used for fabrications with and 

without metal layer. The fabrication run used was MUMPs™_24. 
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Sandia's Ultra-Planar Multi-level MEMS Technology (SUMMiT) Line- 

addressable micromirror array design. Beam structures shown to left of array are 

intended for residual stress testing of the releasable poly silicon layers. 
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APPENDIX F - RELEASE AND PACKAGING PROCEDURE 

The following process was used to release the MUMPs™ and SUMMiT Line- 

Addressable Micromirror Array Devices. Emphasis is placed on maintaining the cleanest 

and safest possible environment to protect the handler and maximize device yield. The 

steps in this process are an extension of those listed in Cowan's dissertation [10]. 

Laboratory Safety Measures 

• Appropriate safety gear is to be worn at all times when handling chemicals including 
laboratory coat/apron, latex gloves, and protective eyeware. All chemicals should be 
handled under a fume hood. 

• Hydrofluoric acid (HF) is used in the process and is extremely hazardous. In case of 
skin contact apply calcium phosphate cream and seek immediate emergency 
treatment. 

• Only trained personnel should handle spills in work area. 

• A laboratory technician should be available at all times in case of emergency. 

Chemical Bath Preparation 

1. Five plastic beakers are required. Size of beakers will vary with number of die to be 
released (~ 1 liter every two die). Rinse them thoroughly with deionized water. Dry 
off excess with disposable laboratory wipe and blow dry with nitrogen gas. 

2. Appropriately label beakers with China marker - Acetone #1 and #2, Methanol #1 
and #2, and HF (hydrofluoric acid). 

3. Fill beakers roughly halfway with fresh chemicals. Pour fresh chemicals from source 
container into #2 beakers, and then transfer into #1 beakers (if applicable). This is 
done to ensure that the #2 baths are the purest. Record the before and after weight of 
the source containers as well as the date and their serial number in laboratory log. 

4. All handling of die to and from bathes should be accomplished with separate plastic 
tweezers. 

Photoresist Removal 
5. Bath die in Acetone #1 for 5-7 minutes, (bulk photoresist removal) 
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6. Bath die in Acetone #2 for 5-7 minutes, (finish photoresist removal) 

7. Bath die in Methanol #1 for 5-10 minutes, (rinse off Acetone) 

Mounting of Package 

8. Place die in a clean petri dish and dry on hotplate at 55 °C. 

9. Add post-foundry mirror metallization if desired 

10. Place clean dry chip carriers on 150 °C hotplate and allow to warm. 

11. Apply small dab/chip of hot melt adhesive (either MasterBond™ or CrystalBond™ 
509) to chip carrier (glue flows ~ 121 °C) 

12. Gently position die on chip carrier using a cotton tip applicator. Make sure die is 
oriented correctly. 

13. Remove any excess glue and or debris with short soak (2-3 min) in Acetone. Use 
Acetone #2 if it is not needed for further photoresist removal. 

14. Soak die in Methanol #1 for 5-10 min. 

Releasing of die 

15. Place packaged die in HF. Typical etch times for MUMPs™ device -2.5 minutes , 
SUMMiT device ~ 45-55 minutes. It is believe that a slight agitation / stirring of the 
HF may help the etching process. Be extra careful when handling the HF. 

16. Soak packaged die in Methanol #1 for > 5 min (Methanol rinses remove any water 
underneath the mirror elements, this ensure that released elements won't stick due to 
charged ion buildup upon evaporation during drying) 

17. Soak packaged die in Methanol #2 for > 15 min. If necessary, device can be 
temporarily stored in methanol. 

18. Dry packaged die on a ~ 55 °C hot plate. A good release is characterized by rapid 
evaporation of methanol without boiling. 

19. Visually examine device with naked eye and under microscope. Broken or 
unreleased elements will exhibit some specular reflection. For SUMMiT devices, 
when viewing under microscope if intensity across elements appears to fluctuate 
while focusing or certain elements focus at different distances it is a good indication 
that elements are not uniformly deflected. Do not blow air or nitrogen on devices!! 

20. If device is not completely released repeat releasing procedure. Be careful not to 
overetch (this will be obvious under microscope for MUMPs™ devices). 

Connect to package 

21. Warm-up wirebonding maching roughly lhout before bonding 
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22. Wirebond electrical connections from package to device. This will be a difficult task 
for SUMMIT devices since connection pads are polysilicon on device. In addition, 
over time, a thin oxide layer will form on polysilicon making it increasingly difficult 
to bond. For bonding of multiple SUMMiT devices, work on one at a time and store 
others in Methanol #2. 

23. If difficulty in bonding of SUMMiT devices persists, wave packaged die over the 
mouth of HF bottle. 

24. In case of capillary failure on wirebonding machine contact laboratory technician. 

25. Store packaged die in clean, dry sealed container. Place container in dry box for 
long-term storage. 

Cleanup Laboratory 
26. Empty both Methanol and Acetone dips into hazardous waste jar. Empty waste HF 

into separate plastic waste container. Do not store HF in glassware. 

27. Rinse containers in DI water. 

28. Disconnect hot plates (and turn off radio!) before leaving. 
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,® APPENDIX G - MATLAB^ MECHANICAL RESPONSE CODE 

The following is the contents of the "DeflectionResponse.m" MATLAB® function file, 
which produces a deflection response curve from the static fringe voltage: 

function [Deflection, Voltage] = DeflectionResponse(Vstatic) 

% DeflectionResponse( Vstatic(in Volts) ) 
%      Computes the estimated deflection response based on the static fringe 
%      voltage recorded. 
%      Written by Harris J. Hall 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

help DeflectionResponse;  % print header 

%Declare Variable Parameter Settings 

A = (77e-6)*(88e-6);  %computes area of overlapping plates (meters) 
epsilon = 8.851e-12;  %coefficient of permittivity in vacuum 
((Coulombs'^)/(N*m*2)) 
dstatic = 316.4e-9;   %static fringe deflection (m) [for HeNe laser] 
t = 2e-6; %seperation between plates at equilibrioum (m) 

%Step 1 - Calculate estimated total spring constant 

k= (A*epsilon*(Vstatic)^2)/(2*dstatic*(t-dstatic)"2)  % (Newtons/meter) 

%Step 2 - Generate Deflection Response Curve 

Deflection = (0:le-9:664e-9); 
%Creates a deflection vector in increments of 1 ran 
%Models only accurate for deflection < t/3 after which snap down occurs 

Voltage = ((2*k/(A*epsilon))A0.5)*(Deflection."0.5).*(t-Deflection); 

The following is the contents of "DifferentialLineControl.nl", the MATLAB® function 
file that generates a deflection map for the LAMA device based on the line inputs 
(requires roughly 160 sec of CPU time with dual 550MHz Pentium processors): 

function [DeflectionMap, VoltageMap] = DifferentialLineControl(Deflection, 
Voltage, Vrows, Vcols) 

% DifferentialLineControl( Deflection[x}, Voltage[x], Vrows tran[M], Vcols[N]) 
%      Computes differential voltage map and translates into deflection 
pattern 
%      based upon lookup tables. 
%      Written by Harris J. Hall 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

help DifferentialLineControl;  % print header 
tstart = cputime; %Marks start of CPU clock timer 

161 



%Step 1 - Generate Differential Voltage Map 
VoltageMap = zeros(32); 

A = ones(32,1)*Vrows; 

B = (ones(32,l)*Vcols)'; %transpose for cols 

VoltageMap = abs(A-B);  %takes absolute value of differential voltage 

%Step 2 - Create Deflection Map by searching through lookup table 
DeflectionMap = zeros(32); 

for i = 1:32 
for j = 1:32 

for x = 1:665 

diff = abs(Voltage(x) - VoltageMap(i,j)) ; 

if diff == min(abs(Voltage-VoltageMap(i,j))); 
DeflectionMap(i,j) = Deflection(x); 

end 

end 
end 

end 

The following is a sample MATLAB® script file used to generate corresponding response 
curves and pattern plots: 

%Execution script to create estimated Deflection Profile based on 
%static fringe voltage 

tstart = cputime; %Marks start of CPU clock timer 

Vstatic = 26 

[Deflection, Voltage] = DeflectionResponse(Vstatic); 

figure(1) 
plot(Voltage,(Deflection./le-9)) 
xlabeK 'Voltage (V) ') 
ylabel('Deflection (nm)') 
title('Plot of Estimated Deflection vs. Voltage for LAMA element') 

%Execution script to create 32x32 Deflection Map for arbitrary DC line voltages 

Vrowamp = 2 6; 
Vcolamp = 0; 

Vrows = (1/32:1/32:1)*Vrowamp; %defines row voltages 

Vcols = (1/32:1/32:1)*Vcolamp; %defines col voltages 

[DeflectionMap, VoltageMap] = DifferentialLineControl(Deflection, Voltage, 
Vrows, Vcols); 

figure(2) 
colormap(gray) 
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brighten(0.7) 
bar3(VoltageMap) 
title('3D bar chart indicating row voltage ramp distribution across LAMA') 

xlabel('Rows') 
ylabel('Columns') 
zlabeK'Voltage (Volts)') 

figure(3) 
colormap(gray) 
brighten(0.7) 
bar3(DeflectionMap./le-9) 
title('3D bar chart indicating deflection response to row voltage ramp 
distribution across LAMA') 
xlabel('Rows') 
ylabel('Columns') 
zlabel('Deflection (nm)') 

CPU_Time_Elapsed = cputime - tstart %displays elapsed CPU time used to run 
algorithm 

clear ans; %clears answer and tstart variables on workspace 
clear tstart; 

The following is the contents of "mechresp.m", the script file that provides a simple 
mechanical frequency response model of an individual micromirror element based on the 
mass-spring system presented in Section 3.3.3. 

%mechresp.m 
%Second-order mass-spring model for mechanical response of micromirror element 
%uses MATLAB Control System toolbox 
%by Harris J. Hall 

%Define parameters 
rho = 233 0; %density of polysilicon (kg/mA3) 
vol = 3.74e-14; %volume of top plate (nT3) 
B = 0;  %Dampening constant (N-s/m) 
k = 22.6;  %Estimated spring constant (N/m) 

%Calculate mass 
M = rho*vol  %Mass of top plate 

%Calculate modal parameters 
omegaRes = (k/M)A0.5 ; %angular resonant frequency (rad/sec) 
K = 1/k; %DC Gain 
Q = 2*pi*(M/B); %Quality factor 
fres = (1/ (2*pi) ) *omegaRes; %resonant frequency (Hz) 

disp('Resonant Frequency (Hz):') 
disp(fres) 

disp('Angular Resonant Frequency (rad/sec):') 
di sp(omegaRes) 

%Define transfer function 
g = tf([(1/M)],[1 (B/M) (k/M)]); 

%Generate Bode plot of frequency response (rad/sec) 
figure(1) 
bode(g) 
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%Generate step response Amp vs. time 
figure(2) 
step(g) 
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,® APPENDIX H - MATLAB^ FAR-FIELD SIMULATION CODE 

The following is the contents of the "FarFieldSim.m" MATLAB® function file: 

function [aplmage, FF, u] = FarFieldSim(patternfilename,wavelength,z) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FarFieldSim( patternfilename, wavelength(nm), z(meters) ) 
%      Computes the estimated far-field pattern of an arbitrary 32x32 square 
%      micromirror array binary phase pattern defined in patternfilename. 
%      Written by Harris J. Hall (Special Thanks to Maj Roger Claypoole) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

help FarFieldSim;  % print header 
tstart = cputime; %Marks start of CPU clock timer 

%Declare Variable Parameter Settings 
N_FFT=2048; %Number of pixels in final far-field pattern (determines extent of 
zero padding) 
T=3e-6;     %T is the spatial period represented by each pixel (in meters) 

%  in this instance we have 1 pixel = 3 microns 

N = 32;  % number of phase pixels defining mirror element 
M = 1;   % number of pixels defiing gap between adjacent elements (dead space) 
downGap = 1050; %defines difference in height (in nm) between up position and 

%snap-down 
elementDip = 100; %peak dip in nm for element curvature 
arrayDip = 100; %peak dip in nm for macro array curvature 

%Preliminary argument check 
if nargin ~= 3  %checks if z argument is present when function is called 

z = 1; %default value is z=l meter 
end  %end of if conditional 

if nargin >= 2  %checks if wavelength argument is present when function is 
called 

elementPhase = (downGap / wavelength) * 2;  %phase accrued for snap-down 
(in radians) 

% x2 for reflection 
else   %default wavelength is 632.8nm HeNe 

elementPhase = 1.6592; 
wavelength = 632.8; 

end %end of if conditional 

elementDip = (elementDip)/wavelength; 
%peak amount phase accrued at center of element 
%used to scale element curvature profile (radians) 

arrayDip =  (arrayDip)/wavelength; 
%peak amount phase accrued at center of array 
%used to scale macro array curvature profile (radians) 

clear downGap; % removes gap variable from memory 
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%Step 1 - Read in 32x32 pattern array from *.pat file 
%        The data is placed in a variable that has the same name 
% as the filename without the extension. 

if nargin == 0 

fileName = 'blank.pat'; %default to empty array if no filename is entered 

else 

fileName = num2str(patternfilename); %converts patternfilename to string 

end %end of if conditional 

smallArray = load(fileName); %reads space delimited 32x32 matrix from text file 

%Step 2 - Creates 32x32 exponential array 
phase = exp(j*smallArray*elementPhase); 

%Step 3 - Create a 33x33 intermediate array that will act as amplitude filter 
disp('Creating initial phase array...') 
b = zeros(N+M,N+M); 
b(l:N,l:N) = 1; 

%Step 4 -  Build our big phase map with dead space (1056x1056 pixels) 
apArray = kron(phase,b); 
%kroneker delta multiplication generates 1056x1056 array 

%Step 5 - Create pseudo-image of aperature 
aplmage = kron(smallArray + 0.5,b); 

%Step 6 - Create and apply element curvature profile 
disp('Applying element curvature profile...') 
elementProfile = zeros(N,N); %32x32 array 

p=l:N; 
L = sin((p-1)*(pi)/31); %apply scaled Lambertian distribution 
elementProfile = transpose(L)*L*elementDip; 
%this operation is equivalent to, but faster then a looped element by element 
assignment 
%elementProfile(p,q) = sin((p-1)*(pi)/31)*sin((q-1)*(pi)/31)*elementDip; 
clear p,L; %reset p and L for future allocation 

elementProfile = exp(j*elementProfile); %32x32 Array 

%generate 1056x1056 curvature array and combine for total phase map 
apArray = apArray + kron(elementProfile,b); 
clear elementProfile; 

%Step 7 - Create and apply macro curvature profile 
disp('Applying macro curvature profile...') 
arrayProfile = zeros(1056,1056); 

p=l:1056; 
L = sin((p-1)*(pi)/1055);  %apply scaled Lambertian distribution 
arrayProfile = transpose(L)*L*arrayDip; 
%this operation is equivalent to, but faster then a looped element by element 
assignment 
%arrayProfile(p,q) = sin((p-1)*(pi)/1055)*sin((q-1)*(pi)/1055)*arrayDip; 
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%combine phase map with array curvature for total curvature 
apArray = apArray + arrayProfile; 
clear arrayProfile; 

%Step 8 - Take FFT and center resulting pattern in freq spectrum 
FF=fftshift(fft2(apArray,N_FFT,N_FFT)); 
FF=abs(FF).^2; % converts to intensity 

%Step 9 - Scales far-field pattern according to wavelength and z-distance 
fx=[-l/(2*T):1/(N_FFT*T):1/(2*T)-1/(N_FFT*T)]; 
u=(wavelength*10^-9)*z*fx; 

CPU_Time_Elapsed = cputime - tstart 
%displays elapsed CPU time used to run algorithm 

The following is a sample MATLAB® script file used to display images: 

%Execution script to display aperature and far-field patterns 

[apImage,FF,u] = FarFieldSim('blank.pat'); 

figure(1) 
imagesc(aplmage); 

figure(2) 
imagesc(u,u,log(l+FF)); 

figure(3) 
p=l:32; 
L = sin((p-l)*(pi)/32); %apply scaled Lambertian distribution 
A = transpose(L)*L*100; 
imagesc(p,p,A); 

figure(4) 
mesh(p,p,A); 
axis([0 32 0 32 0 100]) 

clear ans; %clears answer variable on workspace 
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